Превращение одного вида механической энергии в другой. Превращения энергии

Превращения, рассмотренные при получении диаграммы железо-углерод протекают во времени и успрочняются процессами диффузии. Поэтому появляется возможность влиять на них, изменяя их кинетику. Рассмотрим на примере стали У8

Перлит устойчив до t=727град., выше этой t перлит превращается в аустенит, поскольку свободная энергия аустенита меньше. Критические точки стали (точки Чернова) обозн.буквами А. существуют точки А1,А2,А3,А4. А1 соответствует линии PSK, А3 лежит на линии GSE и соответствует началу выпадения или концу растворения феррита в доэвтектоидной стали.

Чтобы отличить критические точки при нагреве от критических точек при охлаждении ставят знак после буквы А перед цифрой: с – при нагреве, r – при охлаждении. Кроме того существует точка А2 – точка Кюри – 768град, температура магнитного превращения. При этой температуре железо становится немагнитным. И точка А4 соответствует t=1392град, когда гамма-железо превращается в бета-железо.

33. Железо технически чистое технически чистое железо, в котором суммарное содержание примесей - до 0,08–0,1%, в том числе углерода - до 0,05%. Технически чистое железо устойчиво к коррозии, обладает повышенной электропроводностью и очень высокой пластичностью. Применяется для изготовления сердечников электромагнитов, деталей реле, для производства сплавов.

Железо имеет малое удельное электрическое сопротивление, обладает повышенными потерями на вихревые токи, в связи с чем применение его ограничено: в основном для магнитопроводов постоянного магнитного потока (полюсные наконечники, магнитопроводы реле). Технически чистое железо - главный компонент большинства магнитных материалов.

Сталь - деформируемый (ковкий) сплав железа с углеродом (и другими элементами), характеризующийся эвтектоидным превращением. Содержание углерода в стали не более 2,14 % (исключение: порошковая технология), но не менее 0,022 %. Углерод придаёт сплавам железа прочность и твёрдость, снижая пластичность и вязкость.Учитывая, что в сталь могут быть добавлены легирующие элементы, сталью называется содержащий не менее 45 % железа сплав железа с углеродом и легирующими элементами (легированная, высоколегированная сталь).

Сталь - важнейший конструкционный материал для машиностроения, транспорта, строительства и прочих отраслей народного хозяйства.Стали с высокими упругими свойствами находят широкое применение в машино- и приборостроении. В машиностроении их используют для изготовления рессор, амортизаторов, силовых пружин различного назначения, в приборостроении - для многочисленных упругих элементов: мембран, пружин, пластин реле, сильфонов, растяжек, подвесок.Пружины, рессоры машин и упругие элементы приборов характеризуются многообразием форм, размеров, различными условиями работы. Особенность их работы состоит в том, что при больших статических, циклических или ударных нагрузках в них не допускается остаточная деформация. В связи с этим все пружинные сплавы кроме механических свойств, характерных для всех конструкционных материалов (прочности, пластичности, вязкости, выносливости), должны обладать высоким сопротивлением малым пластическим деформациям. В условиях кратковременного статического нагружения сопротивление малым пластическим деформациям характеризуется пределом упругости, при длительном статическом или циклическом нагружении - релаксационной стойкостью.

Бе́лый чугу́н - вид чугуна, в котором углерод в связанном состоянии в виде цементита, в изломе имеет белый цвет и металлический блеск. В структуре такого чугуна отсутствуют видимые включения графита и лишь незначительная его часть (0,03-0,30 %) обнаруживается тонкими методами химического анализа или визуально при больших увеличениях. Основная металлическая масса белого чугуна состоит из цементитной эвтектики, вторичного и эвтектоидного цементита, а легированного белого чугуна - из сложных карбидов и легированного феррита. Отливки белого чугуна обладают износостойкостью, относительной жаростойкостью и коррозионной стойкостью. Наличие в части их сечения структуры, отличной от структуры белого чугуна, понижает эти свойства. Прочность белого чугуна снижается с увеличением содержания в нём углерода, а следовательно, и карбидов. Твёрдость белого чугуна возрастает с ростом доли карбидов в его структуре, а следовательно, и с увеличением содержания углерода.

Наивысшую твёрдость имеет белый чугун с мартенситной структурой основной металлической массы. Коагуляция карбидов резко снижает твёрдость чугуна.

При растворении в карбиде железа примесей и образовании сложных карбидов твёрдость их и белого чугуна повышается. По интенсивности влияния на твёрдость белого чугуна основные и легирующие элементы располагаются в следующей последовательности, начиная с углерода, определяющего количество карбидов и интенсивнее иных элементов увеличивающего твёрдость чугуна.

35.Чугу́н - сплав железа с углеродом (содержанием обычно более 2,14 %), характеризующийся эвтектическим превращением. Углерод в чугуне может содержаться в виде цементита и графита. В зависимости от формы графита и количества цементита, выделяют: белый, серый, ковкий и высокопрочные чугуны. Чугуны содержат постоянные примеси (Si, Mn, S, P), а в некоторых случаях также легирующие элементы (Cr, Ni, V, Al и др.). Как правило, чугун хрупок.


Установлению закона сохранения и превращения энергии способствовало также открытие эффектов, отличных от механических и тепловых, а также превращения других форм движения в тепловую энергию. Еще Майер в своей работе составляет таблицу всех рассматриваемых им "сил" природы и приводит 25 случаев их взаимопревращений. Рассмотрев превращение теплоты в механическую работу, имеющее место в функционировании паровой машины, он

говорит об электрической "силе" и превращении механического эффекта в "электричество", о "химической силе вещества", о превращении "химической силы" в теплоту и электричество. Он распространяет положение о сохранении и превращении этих различных "сил" природы на живые организмы, утверждая, что при поглощении пищи в организме постоянно происходят химические процессы, результатом которых являются тепловые и механические эффекты.

Исследования электрических явлений давали серьезные основания для подкрепления вывода о взаимопревращении различных форм движения друг в друга. В 1800 году Воль изобретает первый химический источник электрического тока. В 1840 году русский академик Гесс получает важные результаты, свидетельствующие о превращении химических "сил" в теплоту. Работы Фарадея и Ленца приводят к открытиям о превращении электричества и магнетизма. Изучение процессов, происходящих в контактах двух металлических проводников, проделанных Пельтье и Ленцем, свидетельствует о взаимопревращениях электрической "силы" и теплоты. В 1845 году Джоуль устанавливает соотношение между величиной количества теплоты, выделяемой при прохождении электрического тока через проводник, и величиной самого тока и сопротивления проводника (закон Джоуля-Ленца). Итак, на протяжении более четырех десятилетий формировался один из самых великих принципов современной науки, приведший к объединению самых различных явлений природы. Принцип этот гласит, что существует определенная величина, называемая энергией, которая не меняется ни при каких превращениях, происходящих в природе. Исключений из закона сохранения энергии не существует. Историками науки открытие закона сохранения и превращения энергии рассматривается как первая революция в физике.

Превращение энергии в живых системах

Нескончаемый поток энергии в клетке, поток энергии от одной клетки к другой или от одного организма к другому и составляет сущность жизни. Живые клетки обладают сложными и эффективными системами для превращения одного вида энергии в другой. Превращения энергии происходят главным образом в двух структурах - в хлоропластах, имеющихся у зеленых растений, и в митохондриях, имеющихся в клетках как растений, так и животных. Изучением превращений энергии в живых организмах занимается биоэнергетика.

В живом мире различают три основных вида превращения энергии:

1. Лучистая энергия солнечного света улавливается имеющимся в зеленых растениях зеленым пигментом хлорофиллом и превращается в процессе так называемого фотосинтеза в химическую энергию, которая используется для синтеза из двуокиси углерода и воды углеводов и других сложных молекул. Энергия солнечного света, представляющая собой одну из форм кинетической энергии, превращается таким образом в один из типов потенциальной энергии. Химическая энергия запасается в молекулах углеводов и других питательных веществ в форме энергии связей между входящими в их состав атомами.

2. Химическая энергия углеводов и других молекул превращается в процессе клеточного дыхания в биологически доступную энергию макроэргических фосфатных связей. Такого рода превращения энергии осуществляются в митохондриях.

3. Превращение энергии, происходящее при использовании клеткой химической энергии этих фосфатных связей для работы: механической работы - при мышечном сокращении, электрической работы - при передаче нервного импульса, осмотической работы - при передвижении молекул против градиента концентраций, химической работы - при синтезе молекул в процессе роста. Часть энергии при этом теряется, рассеиваясь в форме тепла. Растения и животные выработали в процессе эволюции весьма эффективные преобразователи энергии для осуществления этих процессов, а также весьма тонкие регуляторные системы, дающие клетке возможность приспосабливаться к изменениям окружающих условий.

Область физики, рассматривающая энергию и ее превращения, носит название термодинамики. В ее основе лежит несколько простых принципов, приложимых к любым химическим процессам, где бы они ни происходили - в живых или в неживых системах.


В экспериментально регулируемых условиях можно измерить и сопоставить количество энергии, поступающей в любую систему и выходящей из нее. При этом всегда оказывается, что энергия не создается и не исчезает, а лишь переходит из одной формы, в другую. В этом состоит первый закон термодинамики, который иногда называют законом сохранения энергии: общее количество энергии в любой изолированной системе остается постоянным. Если данная система претерпевает изменения, переходя из исходного состояния в конечное, это может сопровождаться поглощением энергии из окружающей среды или, напротив, выделением энергии в среду. Различие между содержанием энергии системы в ее исходном и конечном состояниях точно соответствует изменению содержания энергии в окружающей среде. Теплота - это та форма энергии, в которой ее наиболее удобно измерять. Почти все физические или химические процессы сопровождаются выделением тепла в окружающую среду или поглощением тепла извне. Процесс, протекающий с выделением тепла, называется экзотермическим. Процесс, протекающий с поглощением тепла извне, называется эндотермическим. Во многих созданных человеком механизмах энергия чаще всего переносится в виде тепла. Однако в биологических системах дело обстоит иначе - по той простой причине, что живые организмы в основном изотермичны: температура отдельных частей клетки или отдельных клеток ткани примерно одинакова. Иначе говоря, клетки действуют иначе, чем тепловая машина; в них не происходит переноса тепла от более теплой части тела к более холодной, т. е. по градиенту температуры.

Второй закон термодинамики можно кратко сформулировать следующим образом: «Энтропия вселенной возрастает». Энтропия - это неупорядоченное состояние внутренней энергии (которая не способна производить работу). Второй закон можно выразить и иначе: «Физические и химические процессы в замкнутой системе происходят таким образом, что энтропия системы стремится к максимуму». Следовательно, энтропия - это мера хаотичности или неупорядоченности. Поскольку почти все превращения энергии сопровождаются потерей некоторого количества тепла, обусловленной беспорядочным движением молекул, энтропия окружающей среды при этом повышается. Живые организмы и составляющие их клетки высокоорганизованны и поэтому их энтропия невелика. Они сохраняют это «низкоэнтропийное» состояние за счет повышения энтропии внешней среды. Когда мы едим конфеты и превращаем содержащуюся в них глюкозу в двуокись углерода и воду, которые выделяются во внешнюю среду, мы повышаем энтропию среды. Стремление к состоянию с максимальной энтропией - движущая сила всех процессов. Выделение организмом тепла или поглощение тепла из окружающей среды приводит систему организм - среда к состоянию с максимальной энтропией.

Кроме того, имеется так называемая свободная энергия. Ее можно рассматривать как ту часть общей энергии системы, которая способна производить работу в изотермических условиях. Энтропия и свободная энергия связаны известной зависимостью; увеличение энтропии при необратимом процессе сопровождается уменьшением количества свободной энергии. Все физические и химические процессы протекают с уменьшением свободной энергии до тех пор, пока не достигается состояние равновесия, при котором свободная энергия системы минимальна, а энтропия максимальна. Свободная энергия - это полезная энергия, а энтропия служит мерой энергии, которую уже нельзя использовать. 

В природе, технике и быту можно часто наблюдать превращения одного вида механической, энергии в другой: потенциальной в кинетическую и кинетической в потенциальную, например, при падении воды с плотины ее потенциальная энергия превращается в кинетическую. В качающемся маятнике периодически эти виды энергии переходят друг в друга.

Очень удобно явление превращения одного вида механической энергии в другой наблюдать на приборе, изображенном на рисунке 176. Накручивая на ось нить, поднимают диск прибора. Диск, поднятый вверх, обладает некоторой потенциальной энергией. Если его отпустить, то он, вращаясь, начнет падать. По мере.падения потенциальная энергия диска уменьшается, но вместе, с тем.возрастает его кинетическая энергия. В конце падения диск обладает таким запасом кинетической энергии, что может опять подняться почти до прежней высоты. Поднявшись вверх, диск снова падает, а затем снова поднимается. В этом опыте при движении диска вниз его потенциальная энергия превращается в кинетическую , а при движении вверх кинетическая энергия превращается в потенциальную.

Превращение энергии из одного вида в другой происходит также при ударе двух каких-нибудь упругих тел, например резинового мяча о пол или стального шарика о стальную плиту.

Если поднять над стальной плитой стальной шарик (рис. 177) и выпустить затем его из рук, то он будет падать. По мере падения шарика его потенциальная энергия убывает, а кинетическая растет, так как увеличивается скорость движения шарика. При ударе шарика о плиту произойдет сжатие, как шарика, так и плиты, и кинетическая энергия, которой шарик обладал, превратится в потенциальную энергию сжатой плиты и сжатого шарика. Затем благодаря действию упругих сил плита и шарик примут свою первоначальную форму, шарик отскочит от плиты, а их потенциальная энергия вновь превратится в кинетическую энергию шарика: шарик отскочит вверх со скоростью, равной скорости, которой обладал в момент удара о плиту. При подъеме вверх скорость шарика, а следовательно, и его кинетическая энергия уменьшается, потенциальная энергия растет. Отскочив от плиты, шарик поднимается почти до той же высоты, с которой начал падать. В верхней точке подъема вся его кинетическая энергия вновь превратится в потенциальную.

Явления природы обычно сопровождаются превращением одного вида энергии в другой.

Энергия может и передаваться от одного тела к другому. Так, например, при стрельбе из лука потенциальная энергия натянутой тетивы переходит в кинетическую энергию летящей стрелы.

Вопросы. 1. Как на опыте можно показать превращение одного вида механической энергии в другой? 2. Какие превращения энергии происходят при ударе стального шарика о стальную плиту? 3. Какие превращения энергии происходят при падении воды с плотины?

Упражнения.

  1. Укажите превращение одного вида энергии в другой в следующих ду случаях:
  • при падении воды водопада;
  • при бросании мяча вертикально вверх;
  • при закручивании пружины наручных часов;
  • на примере дверной пружины.
  1. Массы падающих тел одинаковы. Одинаковы ли значения потенциальной энергии тел на одной и той же высоте и одинаковы ли значения кинетической энергии на этой высоте?
  2. Приведите примеры тел, обладающих одновременно кинетической и потенциальной энергией.

Задания.

  1. Изготовьте нитяной и пружинный маятники. Пронаблюдайте за их колебаниями. Кратко опишите превращения энергии, происходящие при колебании этих маятников.

Указание.

Нитяной маятник состоит из нити, на конце которой укреплен груз.

Пружинный маятник представляет собой пружину, к концу которой подвешен груз. Во время опыта верхний конец пружины укрепляют или держат в руке, груз слегка оттягивают вниз и отпускают.

  1. Прочтите в конце учебника параграф «Энергия движущейся воды и ветра. Гидравлические и ветряные двигатели». Подготовьте доклады на темы:
  • От водяных колес до современных гидротурбин.
  • Ветряные двигатели и их применение .

Колебания нитяного маятника . На рисунке слева вы видите груз, качающийся на нити. Сначала его оттянули вправо, и он приподнялся на высоту h над своим нижним положением. В этот момент груз имел наибольшую потенциальную энергию под действием силы тяжести.

Когда груз отпустили, он начал двигаться влево, увеличивая скорость. Следовательно, кинетическая энергия груза возрастает. Одновременно груз опускается, и в среднем положении его потенциальная энергия становится наименьшей. Однако в этот момент скорость груза является наибольшей. Поэтому за счёт запаса кинетической энергии, продолжая двигаться влево, груз поднимается всё выше. Это приводит к возрастанию его потенциальной энергии. Одновременно скорость груза уменьшается, что вызывает уменьшение кинетической энергии.

В этом примере энергия одного и того же тела переходит из одного вида в другой: из кинетической энергии в потенциальную и наоборот. Рассмотрим теперь примеры, когда энергия переходит не только из одного вида в другой, но и от одного тела к другому.

Колебания пружинного маятника . Взгляните на рисунок. Сначала груз на пружине оттянули вниз. Пружина растянулась, следовательно, сила упругости возросла. Увеличение этой силы означает увеличение потенциальной энергии пружины.

После отпускания груза пружина сжимается. По мере её сжатия сила упругости пружины уменьшается, значит, уменьшается потенциальная энергия пружины. Однако одновременно возрастает кинетическая энергия груза, так как при разгоне вверх увеличивается его скорость. Одновременно возрастает потенциальная энергия груза под действием силы тяжести, так как груз поднимается выше. Эти превращения энергии из одного вида в другой и переходы от тела к телу происходят периодически.

В только что рассмотренном примере энергия переходила из одного вида в другие: из потенциальной под действием силы упругости в кинетическую, а также в потенциальную под действием силы тяжести, и наоборот. Кроме того, энергия переходила от одного тела к другому: от пружины к грузу, и наоборот.

Торможение тела силой трения . На правом рисунке сверху изображено колесо едущего поезда; снизу – то же колесо, но при торможении поезда: тормозные колодки прижались к колесу. Возникшая сила трения замедляет вращение колёс, а значит, и скорость поезда. Это приводит к уменьшению его кинетической энергии. Колодки и колесо в нижней части рисунка не случайно выделены красным цветом: они настолько сильно нагреваются из-за трения, что при касании рукой можно получить ожог.

В этом примере мы наблюдали превращение механической энергии во внутреннюю энергию: кинетическая энергия всего поезда превращалась во внутреннюю энергию его тормозных колодок, колёс и воздуха, который тоже нагревался (соприкасаясь с горячими колёсами и тормозными колодками).

Итак, все рассмотренные в этом параграфе примеры являются качественными подтверждениями всеобщего закона сохранения энергии, который иногда называют законом сохранения и превращения энергии.

Рассмотрим на примере колебаний груза на пружине, какие превращения энергии происходят в колебательной системе. Сначала рассмотрим случай, когда в системе нет трения. Первоначальное положение системы показано на следующем рисунке (а).

Выведем систему из положения равновесия, оттянем шарик вправо на расстояние Хm. На рисунке выше положение (б). При этом мы сообщим системе некоторую потенциальную энергию.

Формула потенциальной энергии

Потенциальная энергия будет вычисляться по следующей формуле:

Wп = (k*(Xm)^2)/2.

Вся энергия системы будет равняться потенциальной энергии.

После этого мы отпустим тело. Шарик начнет движение влево. Деформация пружины будет уменьшаться. При этом будет становиться меньше и потенциальная энергия. Но из закона сохранения энергии мы знаем, что она не может исчезать бесследно, она должна переходить в какой-то другой вид энергии.

Заметно, что после того как мы отпустили шарик, его скорость начала увеличиваться, а следовательно, будет возрастать и кинетическая энергия. В момент, когда шарик будет проходить положение равновесия, его скорость будет максимальной, а, следовательно, кинетическая энергия тоже будет максимальной. При этом, так как деформация пружины равняется нулю, то потенциальной энергии вообще не будет.

После того как шарик пройдет положение равновесия, его скорость снова начнет уменьшаться. А значит, будет уменьшаться и кинетическая энергия его движения. Так как в системе снова появится деформация пружины, она будет растягиваться, то начнет увеличиваться потенциальная энергия.

Дойдя до крайнего левого положения (в), потенциальная энергия достигнет своего максимального значения. А скорость груза в этой точке станет равной нулю. То есть кинетическая энергия будет равняться нулю.

Превращение энергии при гармонических колебаниях

Мы видим, что полная энергия системы в любой момент времени есть сумма потенциальной энергии системы и кинетической энергии системы.

W = Wк+Wп = (m*V^2)/2 +(k*x^2)/2.

Такие же превращения энергии будут происходить и в математическом маятнике. Как мы видим, полная механическая энергия замкнутой системы будет сохраняться постоянной. Хотя при этом значения кинетической и потенциальной энергии могут меняться, но в сумме они всегда будут давать одинаковое число.

Полная механическая энергия системы равняется потенциальной энергии тела в начальной момент, либо кинетической энергии тела, при прохождении им положения равновесия.

W = (m*V^2)/2 = (k*x^2)/2.

Если в системе будет присутствовать трение, то часть энергии будет теряться на преодоление сил трения. При этом с течение времени амплитуда колебаний будет уменьшаться, пока тело совсем не остановится. Данные колебания будут затухающими.