Энергетика проблемы и перспективы. Проблемы и перспективы развития энергетики

Электроэнергетический комплекс без преувеличения может быть назван одной из ключевых отраслей промышленности. Без электроэнергии невозможно производство в практически любой другой области. Таким образом, от энергетики, в конечном счете, зависит вся экономика нашей страны. Попробуем разобраться, в каком состоянии в настоящий момент находится российская энергетика и чего ожидать от нее в будущем.

Россия – один из лидеров мирового энергетического рынка

В настоящее время Россия входит в десятку крупнейших производителей электроэнергии и в число стран, обладающих самыми крупными запасами энергоресурсов. Во многом сегодняшнее лидерство определили заслуги советских строителей – речь идет о масштабном строительстве тепло- и гидроэлектростанций (проект ГОЭЛРО), а позднее и АЭС. В 60-80-х годах прогресс обеспечивался за счет активного освоения природных ресурсов Западной и Восточной Сибири.

А вот в последнее десятилетие XX-века энергетика была практически заброшена. Новые проекты, введенные в работу в тот период, можно пересчитать буквально по пальцам. В начале 2000-х ситуация начала понемногу исправляться, но и проблем пока еще очень много, и темпы роста не так велики, как хотелось бы.

Бич энергетики – устаревшее оборудование и технологии, отсутствие кадров и инвестиций

По оценкам экспертов, от 50 до 80% оборудования, занятого сегодня в российском производстве энергии, уже выработало или в ближайшие годы выработает свой ресурс. А это означает, что в обозримом будущем мы вполне сможем столкнуться с нехваткой электроэнергии и, как не трудно догадаться, с повышением цен. Несмотря на то, что с 2003 года наблюдается рост объема производства электроэнергии, электроэнергия становится все более дефицитной. У нас не хватает генерирующих мощностей, да и то, что есть, используется недостаточно эффективно: весь объем вырабатываемой энергии часто бывает сложно передать потребителю вследствие недостаточного развития электросетей.

Основной проблемой, доставшейся нам в наследство еще от СССР, является то, что половина электроэнергии в стране вырабатывается на газовых паротурбинных блоках, отличающихся малым КПД. КПД газовых паротурбинных блоков в полтора раза ниже, чем у парогазовых.

Страны Европейского Союза и США постепенно заменяют устаревшую паротурбинную технологию. Сегодня там на таких блоках генерируется менее 30% электроэнергии.

Эксперты Европейского банка реконструкции и развития в 2009 году провели исследование энергетического комплекса России и пришли к выводам о необходимости кардинальной реформы, включающей в себя полную замену оборудования на большинстве гидро- и теплоэнергостанций страны. По их подсчетам, общие затраты на модернизацию отрасли составят не менее 48 миллиардов евро.

Вместе с тем, в прошлом году нам удалось ввести в строй производственные мощности, генерирующие 6 ГВт электроэнергии, что стало рекордным показателем с 1985 года.

С другой стороны, российская промышленность продолжает оставаться чрезвычайно энергоемкой. Затраты энергии на производство ВВП превышают среднемировой показатель в 2,3 раза, а в отношении показателя государств Европы – в три раза.

Проблемой является и снижение научно-производственного потенциала в отрасли. Сегодня мы в состоянии производить генераторы и трансформаторы, не уступающие по эксплуатационным параметрам мировым аналогам. Но с точки зрения надежности и безопасности уже наблюдается некоторое отставание. Кроме того, модернизация имеющихся производств и внедрение новых технологий тормозится, в том числе, и отсутствием необходимого количества специалистов нужной квалификации.

Чего ожидать в будущем?

По прогнозам специалистов, в период с 2007 по 2015 год рост внутреннего спроса на электроэнергию составит, в среднем, 3,7-4,0% в год, а в период с 2016 по 2020 годы – 3,6-3,7%. Снижение роста объясняют модернизацией производства и внедрением менее энергоемких технологий. В связи с этим, энергетики каждый год должны вводить в строй мощности, генерирующие 130-200 млн. кВт.

Правительством РФ было принято решение о реализации нескольких программ, в рамках которых планируется снижение энергоемкости самых различных областей хозяйства:

- «Энергоэффективный квартал». В рамках программы планируется коренная модернизация систем энергоснабжения ряда мелких городов и отдельных микрорайонов. Впоследствии опыт будет распространен на системы всей страны;

- «Малая комплексная энергетика», в рамках которой планируется замена оборудования локальных генерирующих мощностей;

- «Инновационная энергетика», проект по внедрению новых технологий и решений.

Кроме того, значительное внимание уделяется атомной энергетике. Благодаря накопленному опыту у России есть все возможности сохранить конкурентоспособность на мировом рынке. Однако необходимо понимать, что 15 лет деградации не могли не сказаться на отрасли, так что сегодня ей необходимы значительные инвестиции.

Согласно государственным планам, в 2015 году рост генерирующих мощностей АЭС должен достигнуть 34-36 ГВт, а к 2020 году – 51-53 ГВт. Начиная со следующего десятилетия, запланирован постепенный переход к новой платформе, основанной на эксплуатации реакции быстрых нейтронов и замкнутом топливном цикле.

Как бы то ни было, для решения проблем в энергетическом комплексе необходим значительный рост инвестиций, повышение энергоэффективности промышленности, а также расширение производства электроэнергии за счет альтернативных источников.

К сожалению, не так давно мы допустили одну довольно серьезную ошибку: разделение и приватизацию РАО «ЕЭС России». Планировалось, что если допустить к отрасли частный капитал, это простимулирует его вкладывать средства в развитие и модернизацию. Но этого не произошло. Владельцы генерирующих мощностей и сбытовых компаний продолжают эксплуатировать устаревшее оборудование, не желая вкладываться в модернизацию. Здесь, как и во многих других отраслях, действует одно и то же правило: ориентация на «быструю» прибыль и нежелание думать о будущем. Вложения в энергетический комплекс со стороны государства по-прежнему составляют 85-90% от общего числа. Выходит, что средства вкладывает государство, а прибыль получает частник.

В связи со всем этим нетрудно сделать вывод, что сегодня власть должна озаботиться внесением изменений в законодательство, которые были бы направлены на:

Повышение контроля за деятельностью компаний отрасли;

Установление определенных показателей прибыли, которые владелец компании обязан направлять на обновление основных фондов и внедрение новых технологий, или, как вариант, экономическое стимулирование модернизации за счет налоговых льгот и других послаблений;

Возвращение чиновников-специалистов к управлению госкомпаниями энергетического сектора. Это позволит повысить управляемость и лучше контролировать ситуацию. Мера, конечно, во многом спорная, но если частные управляющие не будут работать подобающим образом, ничего другого просто не останется.

В течение следующих десятилетий ожидается значительное увеличение энергопотребления, связанное с развитием экономики и приростом населения. Это приведет к росту давления на систему энергоснабжения и потребует повышенного внимания к эффективности использования энергии. Это проблемы современной энергетики, которые надо решать прямо сейчас. Доступность энергоресурсов является ключевым фактором для развития экономики и способствует улучшению качества жизни. Как правило, в основе прогнозов энергопотребления лежат такие факторы, как рост мировых экономик и увеличение численности населения, которые выступают в качестве основной движущей силы непрерывного роста энергопотребления. Эти достижения обеспечили возможность роста экономической активности опережающими темпами по отношению к росту энергопотребления.

Например, несмотря на то, что количество автомобилей в Китае за 2000¬2006 гг. увеличилось более чем в 2 раза, один автомобиль там приходится на 40 человек, в то время как в США данный показатель равен одному автомобилю на двух человек. Исходя из этого, можно с уверенностью прогнозировать дальнейший стремительный рост продаж автомобилей и объемов потребления топлива в Китае. Ускоряющиеся темпы потребления в сочетании с большой численностью населения, которая продолжает расти, позволяют сделать вывод о том, что новая волна роста энергопотребления в значительной степени придется на развивающиеся страны.

Человек только начинает осознавать ограниченность ископаемых ресурсов, в условиях необходимости рационального их использования. Нефти с 1960 по 1970 год было израсходовано столько же, сколько за предыдущие 100 лет. К 2030 году доля нефти как энергоносителя сократится до 16 %. Между тем из разведанных и эксплуатируемых скважин извлекалось до недавнего времени всего 30 % нефти. Уголь может снова стать важнейшим источником энергии. Другой альтернативой всё чаще называется - атомная энергия.

Плодами экономического роста пользуется порядка 15 % населения Земли (в основном, страны Запада), а энергетические ресурсы сосредоточены преимущественно в развивающихся странах. США, ЕЭС, Канада, Япония потребляют 1/2 всей мировой энергии, 1/3 удобрений, 2/3 всех металлов, 2/3 деловой древесины. Они же производят более 2/3 мирового валового продукта, обеспечивают 2/3 мировой торговли, выбрасывают 3/4 всех загрязнителей. Вложение энергии на 100 000 человек в Нидерландах составляет 914 пентаджоулей, Германии - 418, Великобритании - 355, Японии - 352, США - 74, в России - только 16. Борьба за обладание энергоресурсами часто кончается военными конфликтами. В современных условиях усилия в этих конфликтах все чаще направляются не на захват территорий противника, а на подавление военно-экономического потенциала - устранение «конкурента» и обеспечение господства победителя на рынках сырья и сбыта. Это мнение особенно актуально для сегодняшней ситуации в мире.

В настоящее время основными источниками энергии являются углеводороды и урановые руды. Их мировые запасы примерно уже известны, и, даже по самым оптимистическим оценкам, вряд ли разведка даст увеличение их объемов в разы. Поскольку известен и уровень потребления этих ресурсов, то уже подсчитан и срок, после которого они будут полностью исчерпаны. Очевидно, что никакой режим экономии невозобновляемых источников энергии не в состоянии исключить того момента в будущем, когда они будут полностью исчерпаны. Ситуация усугубляется при этом еще несколькими факторами.

Во-первых, экспоненциальным ростом промышленного производства. Так, в прошлом столетии совокупный объем промышленного производства в мире увеличивался в среднем каждые 20 лет. Если эта тенденция сохранится в ХХI в., то через 20 лет потребность в энергоресурсах вырастет в 2 раза, через 40 лет - в 4, к концу ХХI в. - в 32, к концу ХХII в. - в 1024 раза. А поскольку даже при сохранении потребления ресурсов на сегодняшнем уровне их хватит не более чем на несколько десятков лет, то прирост промышленности катастрофически ускоряет приближение всемирной ресурсной катастрофы.

В этом отношении переход к термоядерной энергии (возможно, и в более широком смысле - к плазменной энергетике вообще) - единственный из реально известных выходов из грядущего тупика. Но даже если термоядерные реакции в будущем удастся обуздать, останутся нерешенными другие проблемы современной энергетики.

Современную жизнь невозможно представить без электричества и тепла. Материальный комфорт, который окружает нас сегодня, как и дальнейшее развитие человеческой мысли накрепко связаны с изобретением электричества и использованием энергии.

С древних времен люди нуждались в силе, точнее в двигателях, которые давали бы им силу большую человеческой, для того, чтобы строить дома, заниматься земледелием, осваивать новые территории.

Первые аккумуляторы пирамид

В пирамидах Древнего Египта ученые нашли сосуды, напоминающие аккумуляторы. В 1937 году во время раскопок под Багдадом немецкий археолог Вильгельм Кениг обнаружил глиняные кувшины, внутри которых находились цилиндры из меди. Эти цилиндры были закреплены на дне глиняных сосудов слоем смолы.

Впервые явления, которые сегодня называют электрическими, были замечены в древнем Китае, Индии, а позднее в древней Греции. Древнегреческий философ Фалес Милетский в VI веке до нашей эры отмечал способность янтаря, натертого мехом или шерстью, притягивать обрывки бумаги, пушинки и другие легкие тела. От греческого названия янтаря – «электрон» – это явление стали называть электризацией.

Сегодня нам уже будет нетрудно разгадать «тайну» янтаря, натертого шерстью. В самом деле, почему янтарь электризуется? Оказывается, при трении шерсти о янтарь на его поверхности появляется избыток электронов, и возникает отрицательный электрический заряд. Мы как бы «отбираем» электроны у атомов шерсти и переносим их па поверхность янтаря. Электрическое поле, созданное этими электронами, притягивает бумагу. Если вместо янтаря взять стекло, то здесь наблюдается другая картина. Натирая стекло шелком, мы «снимаем» о его поверхности электроны. В результате на стекле оказывается недостаток электронов, и оно заряжается положительно. Впоследствии, чтобы различать эти заряды, их стали условно обозначать знаками, дошедшими до наших дней, минус и плюс.

Описав удивительные свойства янтаря в поэтических легендах, древние греки так и не продолжили его изучение. Следующего прорыва в деле покорения свободной энергии человечеству пришлось ждать много веков. Зато когда он все-таки был совершен, мир в буквальном смысле слова преобразился. Еще в 3 тысячелетии до н.э. люди использовали паруса для лодок, но только в VII в. н.э. изобрели ветряную мельницу с крыльями. Началась история ветряных двигателей. Водяные колеса использовали на Ниле, Эфрате, Янцзы для подъема воды, вращали их рабы. Водяные колеса и ветряные мельницы вплоть до ХVII века являлись основными типами двигателей.

Эпоха открытий

В истории попыток использования пара записаны имена многих ученых и изобретателей. Так Леонардо да Винчи оставил 5000 страниц научных и технических описаний, чертежей, эскизов различных приспособлений.

Джанбаттиста делла Порта исследовал образование пара из воды, что было важно для дальнейшего использования пара в паровых машинах, исследовал свойства магнита.

В 1600 году придворный врач английской королевы Елизаветы Уильям Гилберт изучил все, что было известно древним народам о свойствах янтаря, и сам провел опыты с янтарем и магнитами.

Кто придумал электричество?

Термин "электричество" ввел английский естествоиспытатель, лейб-медик королевы Елизаветы Уильям Гилберт. Впервые он употребил это слово в своем трактате «О магните, магнитных телах и о большом магните – Земле» в 1600 году. Ученый объяснял действие магнитного компаса, а также приводил описания некоторых опытов с наэлектризованными телами.

В целом практических знаний об электричестве за XVI – XVII столетия было накоплено не так уж много, но все открытия были предвестниками по-настоящему больших перемен. Это было время, когда опыты с электричеством ставили не только ученые, но и аптекари, и врачи, и даже монархи.

Одним из опытов французского физика и изобретателя Дени Папена было создание вакуума в закрытом цилиндре. В середине 1670-х годов в Париже он вместе с голландским физиком Кристианом Гюйгенсом работал над машиной, которая вытесняла воздух из цилиндра путём взрыва пороха в нем.

В 1680 году Дени Папен приехал в Англию и создал вариант такого же цилиндра, в котором получил более полный вакуум с помощью кипящей воды, которая конденсировалась в цилиндре. Таким образом, он смог поднять груз, присоединённый к поршню верёвкой, перекинутой через шкив.

Система работала, как демонстрационная модель, но для повторения процесса весь аппарат должен был быть демонтирован и повторно собран. Папен быстро понял, что для автоматизации цикла пар должен быть произведён отдельно в котле. Французский учёный изобрёл паровой котёл с рычажным предохранительным клапаном.

В 1774 году Уатт Джеймс в результате ряда экспериментов создал уникальную паровую машину. Для обеспечения работы двигателя он применил центробежный регулятор, соединённый с заслонкой на выпускном паропроводе. Уатт детально исследовал работу пара в цилиндре, впервые сконструировав для этой цели индикатор.

В 1782 году Уатт получил английский патент на паровой двигатель с расширением. Он же ввёл первую единицу мощности - лошадиную силу (позднее его именем была названа другая единица мощности - ватт). Паровая машина Уатта благодаря экономичности получила широкое распространение и сыграла огромную роль в переходе к машинному производству.

Итальянский анатом Луиджи Гальвани в 1791 году опубликовал труд «Трактат о силах электричества при мышечном движении».

Это открытие через 121 год дало толчок исследованиям человеческого организма с помощью биоэлектрических токов. Обнаруживались больные органы при исследовании их электрических сигналов. Работа любого органа (сердца, мозга) сопровождается биологическими электрическими сигналами, имеющими для каждого органа свою форму. Если орган не в порядке, сигналы изменяют свою форму, и при сравнении «здоровых» и «больных» сигналов обнаруживаются причины заболевания.

Опыты Гальвани натолкнули на изобретение нового источника электричества профессора Тессинского университета Алессандро Вольта. Он дал опытам Гальвани с лягушкой и разнородными металлами иное объяснение, доказал, что электрические явления, которые наблюдал Гальвани, объясняются только тем, что определенная пара разнородных металлов, разделенная слоем специальной электропроводящей жидкости, служит источником электрического тока, протекающего по замкнутым проводникам внешней цепи. Эта теория, разработанная Вольтой в 1794 году, позволила создать первый в мире источник электрического тока, который назывался Вольтов столб.

Он представлял собой набор пластин из двух металлов, меди и цинка, разделенных прокладками из войлока, смоченного в соляном растворе или щелочи. Вольта создал прибор, способный за счет химической энергии производить электризацию тел и, следовательно, поддерживать в проводнике движение зарядов, то есть электрический ток. Скромный Вольта назвал свое изобретение в честь Гальвани «гальваническим элементом», а электрический ток, получающийся от этого элемента – «гальваническим током».

Первые законы электротехники

В начале XIX века опыты с электрическим током привлекали внимание ученых из разных стран. В 1802 году итальянский ученый Романьози обнаружил отклонение магнитной стрелки компаса под влиянием электрического тока, протекавшего по расположенному вблизи проводнику. В 1820 году это явление в своем докладе подробно описал датский физик Ганс Христиан Эрстед. Небольшая, всего в пять страниц, книжка Эрстеда в том же году была издана в Копенгагене на шести языках и произвела огромное впечатление на коллег Эрстеда из разных стран.

Однако правильно объяснить причину явления, которое описал Эрстед, первым сумел французский ученый Андре Мари Ампер. Оказалось, ток способствует возникновению в проводнике магнитного поля. Одной из важнейших заслуг Ампера было то, что он впервые объединил два разобщенных ранее явления – электричество и магнетизм – одной теорией электромагнетизма и предложил рассматривать их как результат единого процесса природы.

Воодушевленный открытиями Эрстеда и Ампера, другой ученый, англичанин Майкл Фарадей предположил, что не только магнитное поле может воздействовать на магнит, но и наоборот – двигающийся магнит будет оказывать воздействие на проводник. Серия опытов подтвердила эту блестящую догадку – Фарадей добился того, что подвижное магнитное поле создало в проводнике электрический ток.

Позже это открытие послужило основой для создания трех главных устройств электротехники – электрического генератора, электрического трансформатора и электрического двигателя.

Начальный период использования электричества

У истоков освещения с помощью электричества стоял Василий Владимирович Петров, профессор медицинско-хирургической Академии в Петербурге. Исследуя световые явления, вызываемые электрическим током, он в 1802 году сделал свое знаменитое открытие – электрическую дугу, сопровождающуюся появлением яркого свечения и высокой температуры.

Жертвы ради науки

Русский учёный Василий Петров, первым в мире в 1802 году описавший явление электрической дуги, не жалел себя при проведении экспериментов. В то время не было таких приборов, как амперметр или вольтметр, и Петров проверял качество работы батарей по ощущению от электрического тока в пальцах. Чтобы чувствовать слабые токи, учёный срезал верхний слой кожи с кончиков пальцев.

Наблюдения и анализ Петровым свойств электрической дуги легли в основу создания электродуговых ламп, ламп накаливания и много другого.

В 1875 году Павел Николаевич Яблочков создает электрическую свечу, состоящую из двух угольных стержней, расположенных вертикально и параллельно друг другу, между которыми проложена изоляция из каолина (глины). Чтобы горение было более продолжительным, на одном подсвечнике помещалось четыре свечи, которые горели последовательно.

В свою очередь, Александр Николаевич Лодыгин ещё в 1872 году предложил вместо угольных электродов использовать нить накаливания, которая при протекании электрического тока ярко светилась. В 1874 году Лодыгин получил патент на изобретение лампы накаливания с угольным стерженьком и ежегодную Ломоносовскую премию Академии наук. Устройство было запатентовано также в Бельгии, Франции, Великобритании, Австро-Венгрии.

В 1876 году Павел Яблочков завершил разработку конструкции электрической свечи, начатой в 1875 г. и 23 марта получил французский патент, содержащий краткое описание свечи в её первоначальных формах и изображение этих форм. «Свеча Яблочкова» оказалась проще, удобнее и дешевле в эксплуатации, чем лампа А. Н. Лодыгина. Под названием «русский свет» свечи Яблочкова использовались позже для уличного освещения во многих городах мира. Так же Яблочков предложил первые практически применявшиеся трансформаторы переменного тока с разомкнутой магнитной системой.

Тогда же в 1876 году в России была сооружена первая электростанция на Сормовском машиностроительном заводе, ее прародительница была построена в 1873 году под руководством бельгийско-французского изобретателя З.Т. Грамма для питания системы освещения завода, так называемая блок-станция.

В 1879 русские электротехники Яблочков, Лодыгин и Чиколев совместно с рядом других электротехников и физиков организовали в составе Русского технического общества Особый Электротехнический отдел. Задачей отдела было содействие развитию электротехники.

Уже в апреле 1879 года впервые в России электрическими фонарями освещен мост – мост Александра II (ныне Литейный мост) в Санкт-Петербурге. При содействии Отдела на Литейном мосту введена первая в России установка наружного электрического освещения (дуговыми лампами Яблочкова в светильниках, изготовленных по проекту архитектора Кавоса), положившая начало созданию местных систем освещения дуговыми лампами некоторых общественных зданий Петербурга, Москвы и других больших городов. Электрическое освещение моста устроенное В.Н. Чиколевым, где горело 12 свечей Яблочкова вместо 112 газовых рожков, функционировало всего 227 дней.

Трамвай Пироцкого

Вагон электрического трамвая изобрел Федор Аполлонович Пироцкий в 1880 году. Первые трамвайные линии в Санкт-Петербурге были проложены только зимой 1885 года по льду Невы в районе Мытнинской набережной, так как право на использование улиц для пассажирских перевозок имели только владельцы конок – рельсового транспорта, который передвигался при помощи лошадей.

В 80-е годы возникли первые центральные станции, они были более целесообразны и более экономичны, чем блок-станции, так как снабжали электричеством сразу много предприятий.

В то время массовыми потребителями электроэнергии были источники света – дуговые лампы и лампы накаливания. Первые электростанции Петербурга вначале размещались на баржах у причалов рек Мойки и Фонтанки. Мощность каждой станции составляла примерно 200 кВт.

Первая в мире центральная станция была пущена в работу в 1882 году в Нью-Йорке, она имела мощность 500 кВт.

В Москве электрическое освещение впервые появилось в 1881 году, уже в 1883 году электрические светильники иллюминировали Кремль. Специально для этого была сооружена передвижная электростанция, которую обслуживали 18 локомобилей и 40 динамо-машин. Первая стационарная городская электростанция появилась в Москве в 1888 году.

Нельзя забывать и о нетрадиционных источниках энергии.

Предшественница современных ветроэлектростанций с горизонтальной осью имела мощность 100 кВт и была построена в 1931 году в Ялте. Она имела башню высотой 30 метров. К 1941-му году единичная мощность ветроэлектростанций достигла 1,25 МВт.

План ГОЭЛРО

В России создавались электростанции в конце XIX и начале XX веков, однако, бурный рост электроэнергетики и теплоэнергетики в 20-е годы XX столетия после принятия по предложению В.И. Ленина плана ГОЭЛРО (Государственной электрификации России).

22 декабря 1920 года VIII Всероссийский съезд Советов рассмотрел и утвердил Государственный план электрификации России – ГОЭЛРО, подготовленный комиссией, под председательством Г.М. Кржижановского.

План ГОЭЛРО должен был быть реализован в течении десяти-пятнадцати лет, а его результатом должно было стать создание «крупного индустриального хозяйства страны». Для экономического развития страны это решение имело огромное значение. Недаром свой профессиональный праздник российские энергетики отмечают именно 22 декабря.

В плане много уделялось проблеме использования местных энергетических ресурсов (торфа, воды рек, местного угля и др.) для производства электрической энергии.

8 октября 1922 года состоялся официальный пуск станции «Уткина заводь» - первой торфяной электростанции в Петрограде.

Первая ТЭЦ России

Самая первая тепловая электростанция, построенная по плану ГОЭЛРО в 1922 году, называлась «Уткина заводь». В день пуска участники торжественного митинга переименовали ее в «Красный октябрь», и под этим именем она проработала до 2010 года. Сегодня это Правобережная ТЭЦ ПАО «ТГК-1».

В 1925 году запустили Шатурскую электростанцию на торфе, в тот же год на Каширской электростанции начали освоение новой технологии сжигания подмосковного угля в виде пыли.

Днем начала теплофикации в России можно считать 25 ноября 1924 года – тогда заработал первый теплопровод от ГЭС-3, предназначенный для общего пользования в доме номер девяносто шесть на набережной реки Фонтанки. Электростанция № 3, которую переоборудовали для комбинированной выработки тепловой и электрической энергии, является первой в России теплоэлектроцентралью, а Ленинград – пионером теплофикации. Централизованное снабжение горячей водой жилого дома функционировало без сбоев, и через год ГЭС-3 стало снабжать горячей водой бывшую Обуховскую больницу и бани, находящиеся в Казачьем переулке. В ноябре 1928 года к тепловым сетям государственной электростанции № 3 подключили здание бывших Павловских казарм, располагавшихся на Марсовом поле.

В 1926 году была пущена в эксплуатацию мощная Волховская ГЭС, энергия которой по линии электропередачи напряжением 110 кВ, протяженностью 130 км поступала в Ленинград.

Атомная энергетика XX века

20 декабря 1951 года, ядерный реактор впервые в истории произвел пригодное для использования количество электроэнергии - в нынешней Национальной Лаборатории INEEL Департамента энергии США. Реактор выработал достаточную мощность, чтобы зажечь простую цепочку из четырех 100-ваттных лампочек. После второго эксперимента, проведенного на следующий день, 16 участвовавших в нем учёных и инженеров «увековечили» свое историческое достижение, написав мелом свои имена на бетонной стене генератора.

Советские ученые приступили к разработке первых проектов мирного использования атомной энергии ещё во второй половине 1940-х годов. А 27 июня 1954 года в городе Обниск была запущена первая атомная электростанция.

Пуск первой АЭС ознаменовал открытие нового направления в энергетике, получившего признание на 1-й Международной научно-технической конференции по мирному использованию атомной энергии (август 1955, Женева). К концу ХХ века в мире насчитывалось уже более 400 атомных электростанций.

Современная энергетика. Конец XX века

Конец XX века ознаменован различными событиями, связанными как с высокими темпами строительства новых станции, началом развития возобновляемых источников энергии, ак и с появлением первых проблем от сформировавшейся огромной мировой энергосистемы и попытками их решить.

Блэкаут

Американцы называют ночь на 13 июля 1977 «Ночью страха». Тогда случилась огромная по своим размерам и последствиям авария на электрических сетях в Нью-Йорке. Из-за попадания молнии в линию электропередачи на 25 часов была прервана подача электричества в Нью-Йорк и 9 млн жителей оказались без электроснабжения. Трагедии сопутствовал финансовый кризис, в котором пребывал мегаполис, необыкновенно жаркая погода, и небывалый разгул преступности. После отключения электричества на фешенебельные кварталы города набросились банды из бедных кварталов. Считается, что именно после тех страшных событий в Нью-Йорке понятие «блэкаут» стало повсеместно использоваться применительно к авариям в электроэнергетике.

Так как современное сообщество всё больше зависит от электроэнергии, аварии на электросетях наносят ощутимые убытки предприятиям, населению и правительствам. Во время аварии выключаются осветительные приборы, не работают лифты, светофоры, метро. На жизненно важных объектах (больницы, военные объекты и т. д.) для функционирования жизнедеятельности во время аварий в энергосистемах используются автономные источники питания: аккумуляторы, генераторы. Статистика показывает значительное увеличение аварий в 90-е гг. XX - начале XXI вв.

В те годы продолжалось развитие альтернативной энергетики. В сентябре 1985 года состоялось пробное включение генератора первой солнечной электростанции СССР в сеть. Проект первой в СССР Крымской СЭС был создан в начале 80-х в рижском отделении института «Атомтеплоэлектропроект» при участии тринадцати других проектно-конструкторских организаций Министерства энергетики и электрификации СССР. Полностью станция вступила в строй в 1986 году.

В 1992 году началось строительство крупнейшей в мире ГЭС «Три ущелья» в Китае на реке Янцзы. Мощность станции - 22,5 ГВт. Напорные сооружения ГЭС образуют крупное водохранилище площадью 1 045 км², полезной ёмкостью 22 км³. При создании водохранилища было затоплено 27 820 га обрабатываемых земель, было переселено около 1,2 млн человек. Под воду ушли города Ваньсянь и Ушань. Полное завершение строительства и ввод в официальную эксплуатацию состоялся 4 июля 2012 года.

Развитие энергетики неотделимо от проблем, связанных с загрязнением окружающей среды. В Киото (Япония) в декабре 1997 года в дополнение к Рамочной конвенции ООН об изменении климата был принят Киотский протокол. Он обязывает развитые страны и страны с переходной экономикой сократить или стабилизировать выбросы парниковых газов в 2008 – 2012 годах по сравнению с 1990 годом. Период подписания протокола открылся 16 марта 1998 года и завершился 15 марта 1999 года.

По состоянию на 26 марта 2009 Протокол был ратифицирован 181 страной мира (на эти страны совокупно приходится более чем 61 % общемировых выбросов). Заметным исключением из этого списка являются США. Первый период осуществления протокола начался 1 января 2008 года и продлится пять лет до 31 декабря 2012 года, после чего, как ожидается, на смену ему придёт новое соглашение.

Киотский протокол стал первым глобальным соглашением об охране окружающей среды, основанным на рыночном механизме регулирования - механизме международной торговли квотами на выбросы парниковых газов.

XXI век, а точнее 2008 год, стал знаковым для энергетической системы России, было ликвидировано Российское открытое акционерное общество энергетики и электрификации «ЕЭС России» (ОАО РАО «ЕЭС России»)-российская энергетическая компания, существовавшая в 1992-2008 годах. Компания объединяла практически всю российскую энергетику, являлась монополистом на рынке генерации и энерготранспортировки России. На её месте возникли государственные естественно-монопольные компании, а также приватизированные генерирующие и сбытовые компании.

В XXI веке в России строительство электростанций выходит на новый уровень, начинается эра применения парогазового цикла. Россия способствует наращиванию новых генерирующих мощностей. 28 сентября 2009 года началось строительство Адлерской теплоэлектростанции. Станция будет создана на основе 2-х энергоблоков парогазовой установки общей мощностью 360 МВт (тепловая мощность - 227 Гкал/ч) с КПД 52%.

Современная технология парогазового цикла обеспечивает высокий КПД, низкий расход топлива и снижение уровня вредных выбросов в атмосферу в среднем на 30% по сравнению с традиционными паросиловыми установками. В будущем ТЭС должна стать не только источником тепла и электричества для объектов зимних Олимпийских игр 2014 года, но и весомым вкладом в энергобаланс г. Сочи и прилегающих районов. ТЭС включена в утвержденную Правительством РФ Программу строительства олимпийских объектов и развития г. Сочи как горноклиматического курорта.

24 июня 2009 года в Израиле заработала первая гибридная солнечно-газовая электростанция. Построена она из 30 солнечных отражателей и одной "цветочной" башни. Для сохранения мощности системы 24 часа в сутки, она может переключиться на газовую турбину во время наступления темноты. Установка занимает относительно немного места, и может работать в удалённых районах, которые не подключены к центральным энергетическим системам.

Новые технологии, используемые в гибридных станциях, постепенно распространяются по всему миру, так в Турции планируется построить гибридную электростанцию, которая будет работать одновременно уже на трех источниках возобновляемой энергии - на ветре, природном газе и солнечной энергии.

Альтернативная электростанция спроектирована так, что все ее составляющие дополняют друг друга, поэтому американские специалисты сошлись во мнении, что в будущем у подобных станций есть все шансы стать конкурентоспособными, и поставлять электричество по умеренной цене.

Проблемы и перспективы современной энергетики
Специалисты подсчитали, что в США потребление энергии в 6 раз превосходит среднемировой уровень и в 30 раз - уровень развивающихся стран.

Ученые предлагают следующую информацию к размышлению. Если бы развивающиеся страны сумели добиться роста потребления минеральных ресурсов до уровня Соединенных Штатов, то разведанные запасы нефти истощились бы через 7 лет, природного газа - через 5 лет, угля - через 18 лет. Если учесть еще и потенциальные запасы, до которых пока не добрались геологи, то природного газа должно хватить на 72 года, нефти в обычных скважинах - на 60 лет, а в сланцах и песках, откуда ее чрезвычайно трудно и дорого выкачивать, - на 660 лет. Угля - на 350 лет.
Предположим, что на нужды энергии можно использовать, как нефть, всю массу нашей планеты. Если скорость увеличения потребления энергии останется такой же, как сегодня, это “горючее” будет сожжено целиком всего за 342 года.
При современных темпах развития техники производство энергии на Земле через 240 лет превысит количество солнечной энергии, падающей на нашу планету, через 800 лет - всю энергию, выделяемую солнцем, а через 1300 лет превзойдет полное излучение всей нашей Галактики.
Однако главная проблема современной энергетики - не истощение минеральных ресурсов, а угрожающая экологическая обстановка.

Атомная энергетика
Исходя из опыта, человечеству придется отказаться от атомной энергетики по 4 причинам.
Во-первых, каждая атомная электростанция независимо от степени ее надежности является стационарной атомной бомбой, которая в любой момент может быть взорвана путем диверсии, бомбардировкой с воздуха, обстрелом ракетами или обычными артиллерийскими снарядами.
Во-вторых, на примере Чернобыля мы на собственном опыте убедились, что авария на атомной электростанции может произойти по чьей-то небрежности. С 1971 по 1984 гг. на АЭС мира произошла 151 серьезная авария, при которой случился “значительный выброс радиоактивных материалов с опасным воздействием на людей”. С тех пор года не проходило, чтобы в той или иной стране мира не происходило серьезной аварии на АЭС, а иногда - и по несколько аварий.
Втретьих, реальной опасностью являются радиоактивные отходы атомных электростанций, которых за прошедшие десятилетия накопилось довольно много, и накопится еще больше, если атомная энергетика займет доминирующее положение в мировом энергобалансе. Сейчас отходы атомного производства в специальных контейнерах зарывают глубоко в землю или опускают на дно океана. Эти способы не являются безопасными: с течением времени защитные оболочки разрушаются, и радиоактивные элементы попадают в воду и почву, а потом - и в организм человека.
Вчетвертых, атомное горючее может быть с одинаковой эффективностью использовано и в АЭС, и в атомной бомбе. Совет безопасности ООН пресекает попытки развивающихся тоталитарных государств ввозить атомное горючее якобы для развития атомной энергетики. Это закрывает атомной энергетике дорогу в будущее в качестве доминирующей части мирового энергобаланса.
Но атомная энергетика имеет и немаловажные достоинства. Американские специалисты подсчитали, что, если бы к началу 90-х годов в СССР все атомные электростанции заменили на угольные той же мощности, то загрязнение воздуха стало бы настолько велико, что это привело бы к 50-кратному увеличению преждевременных смертей в XXI в. в сравнении с самыми пессимистичными прогнозами последствий чернобыльской катастрофы.

Альтернативная энергетика. Теория и практика
Альтернативная энергетика основана на использовании возобновляемых (или "чистых") источников энергии. К таковым относятся энергогенерирующие устройства, работающие с использованием энергии Солнца, ветра, приливов и отливов, морских волн, а также подземного тепла планеты.

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце. В настоящее время используется лишь малая часть солнечной энергии из-за того, что существующие солнечные батареи имеют сравнительно низкий коэффициент полезного действия и очень дороги в производстве. Специалисты утверждают, что гелиоэнергетика могла бы одна покрыть все мыслимые потребности человечества в энергии на тысячи лет вперед. Но перед ней встает множество проблем, связанных с сооружением, размещением и эксплуатацией гелиоэнергоустановок на тысячах квадратных километров земной поверхности. Поэтому общий удельный вес гелиоэнергетики был и останется довольно скромным.

Энергия ветра
По оценке Всемирной метеорологической организации, потенциал энергии ветра в мире составляет 170 трлн кВтч в год.
У энергии ветра есть несколько существенных недостатков, которые затрудняют ее использование. Прежде всего, она сильно рассеяна в пространстве, поэтому необходимо строить ветроэнергоустановки, способные постоянно работать с высоким КПД.
Ветер очень непредсказуем: часто меняет направление, вдруг затихает даже в самых ветреных районах земного шара, а иногда достигает такой силы, что ломает ветряки. Ветроэнергостанции небезвредны: они мешают полетам птиц и насекомых, шумят, отражают радиоволны вращающимися лопастями. Но у энергии ветра есть главное преимущество - экологическая чистота. К тому же, недостатки можно уменьшить, а то и вовсе свести на нет.
Разработаны ветроэнергоустановки, способные эффективно работать при самом слабом ветерке. Шаг лопасти винта автоматически регулируется таким образом, чтобы постоянно обеспечивалось максимально возможное использование энергии ветра, а при слишком большой скорости ветра лопасть также автоматически переводится во флюгерное положение, так что авария исключается.
Разработаны и действуют так называемые циклонные электростанции мощностью до ста тысяч киловатт, где теплый воздух, поднимаясь в специальной 15-метровой башне и смешиваясь с циркулирующим воздушным потоком, создает искусственный “циклон”, который вращает турбину. Такие установки намного эффективнее и солнечных батарей, и обычных ветряков.
Чтобы компенсировать изменчивость ветра, сооружают огромные “ветряные фермы”. Ветряки там стоят рядами на обширном пространстве и занимают много места. В Дании “ветряную ферму” разместили на прибрежном мелководье Северного моря, где и она никому не мешает, и ветер устойчивее, чем на суше.
Положительный пример использования энергии ветра показали Нидерланды и Швеция (последняя приняла решение на протяжении 90-х гг. построить и разместить в наиболее удобных местах 54 тыс. высокоэффективных энергоустановок).
В мире сейчас работает более 30 тыс. ВЭУ разной мощности. Германия получает от ветра 10% своего электричества, а всей Западной Европе ветер дает 2500 МВт электроэнергии.

Гидроэнергия
Гидроэнергостанции - еще один из источников энергии, претендующих на экологическую чистоту. В начале XX века крупные и горные реки мира привлекли к себе внимание, а к концу столетия большинство из них было перегорожено каскадами плотин, дающими дешевую энергию.
Однако это привело к огромному ущербу для сельского хозяйства и природы: земли выше плотин подтоплялись, на территориях, расположенных ниже, падал уровень грунтовых вод, терялись огромные пространства земли, уходившие на дно гигантских водохранилищ, прерывалось естественное течение рек, загнивала вода в водохранилищах, уменьшались рыбные запасы. На горных реках все эти минусы сводились к минимуму, зато добавлялся еще один: в случае землетрясения, способного разрушить плотину, катастрофа могла привести к тысячам человеческих жертв. Поэтому современные крупные ГЭС не являются действительно экологически чистыми. Однако минусы ГЭС породили идею мини-ГЭС, которые могут располагаться на небольших реках или даже ручьях, а их электрогенераторы способны работать при небольших перепадах воды или будучи движимыми лишь силой течения. Эти же мини-ГЭС могут быть установлены и на крупных реках с относительно быстрым течением.
Детально разработаны центробежные и пропеллерные энергоблоки рукавных переносных гидроэлектростанций мощностью от 0,18 до 30 кВт. При поточном производстве унифицированного гидротурбинного оборудования мини-ГЭС способны конкурировать с максивариантами по себестоимости одного киловаттчаса. Также несомненным плюсом является возможность их установки даже в самых труднодоступных уголках той или иной страны: все оборудование можно перевезти на одной вьючной лошади, а установка или демонтаж занимает всего несколько часов.
Еще одной очень перспективной разработкой, не получившей пока широкого применения, является недавно созданная геликоидная турбина Горлова, названная по имени ее создателя. Ее особенность заключается в том, что она не нуждается в сильном напоре и эффективно работает, используя кинетическую энергию водяного потока - реки, океанского течения или морского прилива. Это изобретение изменило привычное представление о гидроэнергостанции, мощность которой ранее зависела только от силы напора воды, то есть от высоты плотины ГЭС.

Энергия приливов и отливов
Несоизмеримо более мощным источником водных потоков являются приливы и отливы. Проекты приливных гидроэлектростанций детально разработаны в инженерном отношении, экспериментально опробованы в нескольких странах, в том числе на Кольском полуострове в России. Продумана даже стратегия оптимальной эксплуатации ПЭС: накапливать воду в водохранилище за плотиной во время приливов и расходовать ее на производство электроэнергии, когда наступает “пик потребления” в единых энергосистемах, ослабляя тем самым нагрузку на другие электростанции.
Сегодня ПЭС неконкурентоспособны по сравнению с тепловой энергетикой.
Практически на сооружение ПЭС в наиболее благоприятных для этого точках морского побережья, где перепад уровней воды колеблется от 1-2 до 10-16 метров, потребуются десятилетия или даже столетия. Но проценты в мировой энергобаланс ПЭС должны начать давать уже на протяжении XXI века.
Первая приливная электростанция мощностью 240 МВт была пущена в 1966 г. во Франции в устье реки Ранс, впадающей в пролив ЛаМанш, где средняя амплитуда приливов составляет 8,4 м. Открывая станцию, президент Франции Шарль де Голль назвал ее выдающимся сооружением века. Несмотря на высокую стоимость строительства, которая почти в 2,5 раза превосходит расходы на возведение речной ГЭС такой же мощности, первый опыт экплуатации приливной ГЭС оказался экономически оправданным. ПЭС на реке Ранс входит в энергосистему Франции и эффективно используется.
Существуют проекты крупных ПЭС мощностью 320 МВт (Кольская) и 4000 МВт (Мезенская) на Белом море, где амплитуда приливов составляет 7-10 м.
Планируется использовать также огромный энергетический потенциал Охотского моря, где местами, например, в Пенжинской губе, высота приливов достигает 12,9 м, а в Гижигинской губе - 12-14 м. Благоприятные предпосылки для более широкого использования энергии морских приливов связаны с возможностью применения геликоидной турбины Горлова, которая позволяет сооружать ПЭС без плотин, сокращая расходы на строительство.

Энергия волн
Уже сегодня инженерно разработаны и экспериментально опробованы высокоэкономичные волновые энергоустановки, способные эффективно работать даже при слабом волнении или вообще при полном штиле. На дно моря или озера устанавливается вертикальная труба, в подводной части которой сделано “окно”, попадая в которое, глубинная волна (а это почти постоянное явление) сжимает воздух в шахте, а тот крутит турбину генератора. При обратном движении воздух в турбине разрежается, приводя в движение вторую турбину. Таким образом, волновая электростанция работает беспрерывно почти при любой погоде, а ток по подводному кабелю передается на берег. Некоторые типы ВЭС могут служить отличными волнорезами, защищая побережье от волн и позволяя таким образом экономить на сооружении бетонных волнорезов.
Специалистами лаборатории энергетики воды и ветра Северо-Восточного университета в Бостоне (США) разработан проект первой в мире океанской электростанции. Она будет сооружена во Флоридском проливе, где берет начало Гольфстрим. На его выходе из Мексиканского залива мощность водяного потока составляет 25 млн м 3/сек., что в 20 раз превышает суммарный расход воды во всех реках земного шара. По подсчетам специалистов, средства, вложенные в проект, окупятся в течение пяти лет. В этой уникальной электростанции для получения тока мощностью 38 кВт будет использоваться турбина Горлова. Эта геликоидная турбина имеет три спиральные лопасти и под действием потока воды вращается в 2-3 раза быстрее скорости течения. В отличие от многотонных металлических турбин, применяемых на речных гидроэлектростанциях, размеры изготовленной из пластика турбины Горлова невелики (диаметр - 50 см, длина - 84 см), масса ее всего 35 кг. Эластичное покрытие поверхности лопастей уменьшает трение о воду и исключает налипание морских водорослей и моллюсков. Коэффициент полезного действия турбины Горлова в три раза выше, чем у обычных турбин.

Геотермальная энергия
Подземное тепло планеты - довольно хорошо известный и уже применяемый источник “чистой” энергии. В России первая геоТЭС мощностью 5 МВт была построена в 1966 г. на юге Камчатки, в долине реки Паужетки. В 1980 г. ее мощность составляла уже 11 МВт. В Италии, в районах Ландерелло, Монте-Амиата и Травеле, работают 11 таких станций общей мощностью 384 МВт. ГеоТЭС действуют также в США (Калифорния, Долина Больших Гейзеров), Исландии (у озера Миватн), Новой Зеландии, Мексике и Японии. Столица Исландии Рейкьявик получает тепло исключительно от горячих подземных источников.
Геологи открыли, что раскаленные до 180°-200°С массивы на глубине 46 км занимают большую часть территории России, а с температурой до 100°-150°С встречаются почти повсеместно. Кроме того, на нескольких миллионах квадратных километров располагаются горячие подземные реки и моря с глубиной залегания до 3,5 км и температурой воды до 200°С (естественно, под давлением), так что, пробурив скважину, можно без всякой ТЭЦ получить фонтан пара и горячей воды.

Гидротермальная энергия
Кроме подземного, существует и водное тепло, не так распространенное в качестве источника энергии. Вода - это всегда хотя бы несколько градусов тепла, а летом она нагревается до 25°С. Для использования этого тепла необходима установка, действующая по принципу “холодильник наоборот”. Если пропускать воду через холодильный аппарат, то у нее тоже можно отбирать тепло. Горячий пар, который образуется в результате теплообмена, конденсируется, его температура поднимается до 110°С, а затем его можно направлять либо на турбины электростанций, либо на нагревание воды в батареях центрального отопления до 60°-65°С. В ответ на каждый киловаттчас затрачиваемой на это энергии природа возвращает 3 киловаттчаса. По тому же принципу можно получать энергию для кондиционирования воздуха при жаркой погоде.
Наиболее эффективны такие установки при больших перепадах температур. Все необходимые инженерные разработки уже проведены и опробованы экспериментально.

Энергетика сегодня и завтра
Сегодня около половины мирового энергобаланса приходится на долю нефти, около трети - на долю газа и атома (примерно по одной шестой) и около одной пятой - на долю угля. На все остальные источники энергии остается всего несколько процентов. Но там, где есть возможность, следует внедрять альтернативные источники энергии.
Следует отметить (и об этом неоднократно сообщала СиН), что, например, определенный опыт использования энергии ветра уже есть и в Беларуси.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Основы современной энергетики

Энергемтика - область хозяйственно-экономической деятельности человека, совокупность больших естественных и искусственных подсистем, служащих для преобразования, распределения и использования энергетических ресурсов всех видов. Её целью является обеспечение производства энергии путём преобразования первичной, природной, энергии во вторичную, например в электрическую или тепловую энергию. При этом производство энергии чаще всего происходит в несколько стадий:

Получение и концентрация энергетических ресурсов, примером может послужить добыча, переработка и обогащение ядерного топлива;

Передача ресурсов к энергетическим установкам, например доставка мазута на тепловую электростанцию;

Преобразование с помощью электростанций первичной энергии во вторичную, например химической энергии угля в электрическую и тепловую энергию;

Передача вторичной энергии потребителям, например по линиям электропередачи.

Современная энергетика. Проблемы и перспективы.

В чем проблемы современной энергетики? Каковы пути и перспективы ее развития? Во времена Советского союза ответ на эти вопросы был бы однозначным и не подлежащим обсуждению: “Догнать, перегнать и оставить далеко позади государство-соперника (например, США, а тем самым и весь мир) по производству и потреблению энергии”. Такой позиции правительство придерживалось и в промышленности, где оно в отличие от гонки вооружений, преуспело, и Союз действительно далеко обогнал США и весь мир в тяжелой промышленности. Теперь мы видим перед собой результат такой политики - Россию, такую, какая она есть сейчас: с бедным народом и разрушенной экономикой. Посмотрим, к чему привели подобные действия в энергетике. Специалисты подсчитали, что в США потребление энергии в 6 раз превосходит среднемировой уровень и в 30 раз - уровень развивающихся стран. Чтобы подтянуться к уровню хотя бы современных Соединенных Штатов, этим странам нужно каждые несколько лет удваивать производство и потребление энергии, тем более что население этих стран стремительно растет, и для их индустриализации, для переселения новых и новых миллиардов латиноамериканцев, африканцев, арабов, индийцев, китайцев, индонезийцев и т.д. из хижин в благоустроенные жилища рост потребности энергии составляет 6-9% в год!

А теперь обратим внимание на информацию, которую предлагают нам ученые:

1. Если бы развивающиеся страны сумели добиться роста потребления минеральных ресурсов до уровня Соединенных Штатов, то разведанные запасы нефти истощились бы через 7 лет, природного газа - через 5 лет, угля - через 18 лет. Если учесть еще и потенциальные запасы, до которых пока не добрались геологи, то природного газа должно хватить на 72 года, нефти в обычных скважинах на 60 лет, а в сланцах и песках, откуда ее чрезвычайно трудно и дорого выкачивать, - на 660 лет, угля на 350 лет.

2. Предположим, что на нужды энергии можно использовать, как нефть, всю массу нашей планеты. Если скорость увеличения потребления энергии останется такой же, как сегодня, это “горючее” будет сожжено целиком всего за 342 года.

Допустим далее, что мы располагаем запасами горючего, скажем, на миллион лет. Если мы станем увеличивать размеры его потребления всего на 2% в год (а это - приблизительный темп роста мирового народонаселения), то запасов хватит на 501 год.

3. При современных темпах развития техники производство энергии на Земле через 240 лет превысит количество солнечной энергии, падающей на нашу планету, через 800 лет - всю энергию, выделяемую солнцем, а через 1300 лет - полное излучение всей нашей галактики.

Однако, главная проблема современной энергетики - не истощение минеральных ресурсов, а угрожающая экологическая обстановка: еще задолго до того, как будут использованы все мыслимые ресурсы, разразиться экологическая катастрофа, которая превратит Землю в планету, совершенно не приспособленную для жизни человека.

Энергия будущего: Cолнце, воздух и вода - наши лучшие друзья.

Нефть дорожает, и перспектива ее как источника энергии в будущем весьма неопределенна. Пять новых методов добычи энергии - от волновых электростанций, способных отнимать энергию у морских волн, до бактерий, выделяющих электричество из сточных вод, - могут вдохнуть новые силы в наш старый мир.

Представьте себе, что вы месяцами катаетесь на машине, не доливая в бак бензина, обеспечиваете дом энергией океанских волн или подключаете ваш ноутбук к розетке прямо на пиджаке. Впрочем, глядя на ценник на бензоколонке (18 рублей за литр 95-го), можно подумать, что эта энергетическая утопия - совсем уж далекая сказка. С другой стороны, нынешняя мрачная ситуация в энергетике имеет и утешительную сторону. Растущие цены, общая тревога и озабоченность, новая политика правительства - все это, хочешь не хочешь, подталкивает нас к новым усилиям, направленным на обновление всей энергосистемы. Для полномасштабного внедрения некоторых из этих идей потребуются годы и годы. Другие прямо сейчас можно брать на вооружение. Доживем ли мы когда-нибудь до эпохи с бездонными источниками энергии? Строго говоря, вряд ли. Запасы нефти на Земле безусловно ограниченны. Даже водород, которым питается ядерная реакция на Солнце, и тот - увы! - когда-нибудь закончится. До этого страшного мига осталось всего-то миллиардов пять лет. Если не брать в расчет шансов на неожиданный прорыв в технологиях ядерного синтеза, никакой другой источник не обещает в мановение ока решить все наши проблемы. Скорее, энергетические запросы человечества будут удовлетворяться путем объединения различных передовых технологий. В этом союзе сыграют свою роль энергия солнца, ветра, морских волн и другие альтернативные источники. Промышленность как потребитель тоже сделает шаг навстречу - современная технология успешно учится делать больше, потребляя меньше. Очерченные в этой статье пять генеральных идей должны облегчить бремя, которое человечество возлагает на ископаемые виды горючего. Каждая из этих идей подошла вплотную к этапу внедрения, а вместе они должны вымостить дорогу для дальнейших прорывов в производстве и энергосбережении. Не надейтесь, что завтра мы проснемся в новом мире, но сейчас, когда эти проблемы привлекают все более пристальное внимание со стороны ученых, промышленности и потребителей, темпы прогресса растут не по дням, а по часам. В конце концов, смиримся с тем, что запасы всех энергоресурсов ограниченны, зато безграничной остается способность человека порождать новые идеи.

Перспективными считаются реакторы на быстрых нейтронах. Они работают без замедлителя, но требуют несколько иного топлива - произведенного в обычных (тепловых) реакторах плутония. Главное их достоинство с точки зрения энергетики - способность в процессе работы не только производить электроэнергию, но и утилизировать непригодный в качестве ядерного горючего уран-238 для получения новых порций плутония. Фактически появляется возможность организовать так называемый «замкнутый топливный цикл». Впрочем, пока природный уран сравнительно дешев и доступен, эти технологии мало привлекают инвесторов, и за редким исключением реакторы на быстрых нейтронах - это просто реакторы для производства плутония и потенциальные установки для сжигания ядерных отходов. энергия хозяйственный экономический

Человек использует энергию атомного ядра уже 50 лет. Это до сих пор гораздо сложнее, чем топить печку углем или сжигать бензин в двигателе внутреннего сгорания. Начинка ядерных электростанций сделана из того же материала, что и атомная бомба, и все эти годы нас не покидает интуитивное ощущение тревоги и недоверия.

Возможно, еще лет через сто, когда подойдут к концу обычные источники энергии, а возобновляемой замены им так и не найдется, у человечества не будет иного выбора, кроме ядерной энергетики. И будучи реалистом, генеральный директор МАГАТЭ Мохаммед эль Барадеи, выступая в июне 2004 года на конференции в Москве, осторожно сказал так: «сейчас, когда атомная энергетика отмечает свое 50-летие, ее будущее - хоть оно, возможно, и становится многообещающим - все же остается неопределенным».

Размещено на Allbest.ru

...

Подобные документы

    Энергетика как совокупность естественных и искусственных подсистем, служащих для преобразования, распределения и использования энергетических ресурсов всех видов. Структура энергетики современной России, ее элементы и значение, перспективы развития.

    презентация , добавлен 07.10.2013

    Основы энергосбережения, энергетические ресурсы, выработка, преобразование, передача и использование различных видов энергии. Традиционные способы получения тепловой и электрической энергии. Структура производства и потребления электрической энергии.

    реферат , добавлен 16.09.2010

    История развития энергетики как науки, общая и вторичная энергетика, понятие "энергия", пути решения энергетических проблем. Электроэнергетика как самостоятельная отрасль. Технологии, используемые в процессе получения, передачи и использования энергии.

    курсовая работа , добавлен 03.02.2012

    Генерация электроэнергии как ее производство посредством преобразования из других видов энергии, с помощью специальных технических устройств. Отличительные признаки, приемы и эффективность промышленной и альтернативной энергетики. Типы электростанций.

    презентация , добавлен 11.11.2013

    Изучение мирового топливно-энергетического баланса, определение потенциальных энергоресурсов Земли. Анализ создания комфортных условий жизнедеятельности человека посредством преобразования разных видов энергии. Обзор основных свойств систем энергетики.

    реферат , добавлен 03.02.2012

    Описания отрасли энергетики, занимающейся производством электрической и тепловой энергии путём преобразования ядерной энергии. Обзор работы атомной электростанции с двухконтурным водо-водяным реактором. Вклад ядерной энергетики Украины в общую выработку.

    реферат , добавлен 28.10.2013

    Проблемы современной российской энергетики, перспективы использование возобновляемых источников энергии и местных видов топлива. Развитие в России рынка биотоплива. Главные преимущества использования биоресурсов на территории Свердловской области.

    контрольная работа , добавлен 01.08.2012

    Характеристика видов и классификации топливно-энергетических ресурсов или совокупности всех природных и преобразованных видов топлива и энергии. Вторичные топливно-энергетические ресурсы - горючие, тепловые и энергоресурсы избыточного давления (напора).

    контрольная работа , добавлен 31.01.2015

    Обзор развития современной энергетики и ее проблемы. Общая характеристика альтернативных источников получения энергии, возможности их применения, достоинства и недостатки. Разработки, применяемые в настоящее время для нетрадиционного получения энергии.

    реферат , добавлен 29.03.2011

    Типовые источники энергии. Проблемы современной энергетики. "Чистота" получаемой, производимой энергии как преимущество альтернативной энергетики. Направления развития альтернативных источников энергии. Водород как источник энергии, способы его получения.