Формула 2 закона ньютона имеет вид. Законы Ньютона

Энциклопедичный YouTube

  • 1 / 5

    Первый закон Ньютона постулирует существование инерциальных систем отсчета. Поэтому он также известен как Закон инерции . Инерция - это свойство тела сохранять скорость своего движения неизменной (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения тела, на него необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают разной инертностью. Инертность - это свойство тел сопротивляться изменению их скорости. Величина инертности характеризуется массой тела.

    Современная формулировка

    В современной физике первый закон Ньютона принято формулировать в следующем виде :

    где p → = m v → {\displaystyle {\vec {p}}=m{\vec {v}}} - импульс точки, v → {\displaystyle {\vec {v}}} - её скорость , а t {\displaystyle t} - время . При такой формулировке, как и при предшествующей, полагают, что масса материальной точки неизменна во времени .

    Иногда предпринимаются попытки распространить сферу применения уравнения d p → d t = F → {\displaystyle {\frac {d{\vec {p}}}{dt}}={\vec {F}}} и на случай тел переменной массы. Однако, вместе с таким расширительным толкованием уравнения приходится существенным образом модифицировать принятые ранее определения и изменять смысл таких фундаментальных понятий, как материальная точка, импульс и сила .

    Замечания

    Когда на материальную точку действуют несколько сил, с учётом принципа суперпозиции , второй закон Ньютона записывается в виде:

    m a → = ∑ i = 1 n F i → {\displaystyle m{\vec {a}}=\sum _{i=1}^{n}{\vec {F_{i}}}} d p → d t = ∑ i = 1 n F i → . {\displaystyle {\frac {d{\vec {p}}}{dt}}=\sum _{i=1}^{n}{\vec {F_{i}}}.}

    Второй закон Ньютона, как и вся классическая механика, справедлив только для движения тел со скоростями, много меньшими скорости света . При движении тел со скоростями, близкими к скорости света, используется релятивистское обобщение второго закона , получаемое в рамках специальной теории относительности .

    Следует учитывать, что нельзя рассматривать частный случай (при F → = 0 {\displaystyle {\vec {F}}=0} ) второго закона как эквивалент первого, так как первый закон постулирует существование ИСО, а второй формулируется уже в ИСО.

    Историческая формулировка

    Исходная формулировка Ньютона:

    Интересно, что если добавить требование инерциальности для системы отсчёта, то в такой формулировке этот закон справедлив даже в релятивистской механике .

    Третий закон Ньютона

    Этот закон описывает, как взаимодействуют две материальные точки. Возьмём для примера замкнутую систему, состоящую из двух материальных точек. Первая точка может действовать на вторую с некоторой силой , а вторая - на первую с силой . Как соотносятся силы? Третий закон Ньютона утверждает: сила действия F → 1 → 2 {\displaystyle {\vec {F}}_{1\to 2}} равна по модулю и противоположна по направлению силе противодействия F → 2 → 1 {\displaystyle {\vec {F}}_{2\to 1}} .

    Современная формулировка

    Закон утверждает, что силы возникают лишь попарно, причём любая сила, действующая на тело, имеет источник происхождения в виде другого тела. Иначе говоря, сила всегда есть результат взаимодействия тел. Существование сил, возникших самостоятельно, без взаимодействующих тел, невозможно .

    Историческая формулировка

    Ньютон дал следующую формулировку закона :

    Следствия

    Закон сохранения импульса

    Закон сохранения импульса утверждает, что векторная сумма импульсов всех тел системы есть величина постоянная , если векторная сумма внешних сил, действующих на систему тел, равна нулю .

    Закон сохранения механической энергии

    Комментарии к законам Ньютона

    Законы Ньютона являются основными законами механики. Из них могут быть выведены уравнения движения механических систем. Однако не все законы механики можно вывести из законов Ньютона. Например, закон всемирного тяготения или закон Гука не являются следствиями трёх законов Ньютона.

    Силы инерции

    Помимо сил, о которых идёт речь во втором и третьем законах Ньютона, в механике вводят в рассмотрение так называемые силы инерции . Обычно речь идёт о силах инерции двух различных типов . Сила первого типа (Д’Аламберова сила инерции ) представляет собой векторную величину, равную произведению массы материальной точки на её ускорение, взятое со знаком минус. Силы второго типа (Эйлеровы силы инерции ) используются для получения формальной возможности записи уравнений движения тел в неинерциальных системах отсчёта в виде, совпадающем с видом второго закона Ньютона. По определению эйлерова сила инерции равна произведению массы материальной точки на разность между значениями её ускорения в той неинерциальной системе отсчёта, для которой эта сила вводится, с одной стороны, и в какой-либо инерциальной системе отсчёта , с другой .Определяемые таким образом силы инерции силами в смысле законов Ньютона не являются . Данный факт служит основанием для утверждения о том, что они не являются физическими силами ; ту же мысль выражают, называя их фиктивными , кажущимися или псевдосилами .

    Законы Ньютона и Лагранжева механика

    Законы Ньютона - только один из способов формулирования классической механики. В рамках Лагранжевой механики имеется одна-единственная формула (запись действия) и один-единственный постулат (тела движутся так, чтобы действие было стационарным) , и из этого можно вывести все законы Ньютона, правда, только для лагранжевых систем (в частности для консервативных систем). Следует, однако, отметить, что все известные фундаментальные взаимодействия описываются именно лагранжевыми системами. Более того, в рамках Лагранжева формализма можно легко рассмотреть гипотетические ситуации, в которых действие имеет какой-либо другой вид. При этом уравнения движения станут уже непохожими на законы Ньютона, но сама классическая механика будет по-прежнему применима.

    Решение уравнений движения

    Уравнение F → = m a → {\displaystyle {\vec {F}}=m{\vec {a}}} является дифференциальным уравнением : ускорение есть вторая производная от координаты по времени . Это значит, что эволюцию (перемещение) механической системы во времени можно однозначно определить, если задать её начальные координаты и начальные скорости.

    Заметим, что если бы уравнения, описывающие наш мир, были бы уравнениями первого порядка, то из нашего мира исчезли бы такие явления, как инерция , колебания , волны .

    Исторический очерк

    1. Всякое тело продолжает удерживаться в своём состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменять это состояние.
    2. Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.
    3. Действию всегда есть равное и противоположное противодействие, иначе - взаимодействия двух тел друг на друга между собою равны и направлены в противоположные стороны.

    Оригинальный текст (лат.)

    LEX I
    Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quantenus a viribus impressis cogitur statum illum mutare.

    LEX II
    Mutationem motus proportionalem esse vi motrici impressae et fieri secundum lineam rectam qua vis illa imprimitur.

    Actioni contrariam semper et aequalem esse reactionem: sive corporum duorum actiones in se mutuo semper esse aequales et in partes contrarias dirigi.

    Ньютон также дал строгие определения таких физических понятий, как количество движения (не вполне ясно использованное у Декарта) и сила . Он ввёл в физику понятие массы как меры инерции и, одновременно, гравитационных свойств (ранее физики пользовались понятием вес ).

    Завершили математизацию основ механики Эйлер и Лагранж .

    Примечания

    1. Исаак Ньютон. Математические начала натуральной философии. Перевод с латинского и примечания А. Н. Крылова / под ред. Полака Л. С.. - М. : Наука, 1989. - С. 40-41. - 690 с. - («Классики науки»). - 5 000 экз. - ISBN 5-02-000747-1 .
    2. Тарг С. М. Ньютона законы механики // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров . - М. : Большая российская энциклопедия, 1992. - Т. 3: Магнитоплазменный - Пойнтинга теорема. - С. 370. - 672 с. - 48 000 экз. - ISBN 5-85270-019-3 .
    3. Инерциальная система отсчёта // Физическая энциклопедия (в 5 томах) / Под редакцией акад.

    Второй закон Ньютона - дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как меру проявления инертности материальной точки в выбранной инерциальной системе отсчёта (ИСО).

    Современная формулировка

    В инерциальной системе отсчёта ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

    При подходящем выборе единиц измерения, этот закон можно записать в виде формулы:

    где: - ускорение материальной точки;

      Сила, приложенная к материальной точке;

    m - масса материальной точки.

    Или в более известном виде:

    В случае, когда масса материальной точки меняется со временем, второй закон Ньютона формулируется с использованием понятия импульс:

    В инерциальной системе отсчета скорость изменения импульса материальной точки равна равнодействующей всех приложенных к ней сил.

    где: - импульс точки,

    где: - скорость точки;

    Производная импульса по времени.

    Когда на тело действуют несколько сил, с учётом принципа суперпозиции второй закон Ньютона записывается:

    Второй закон Ньютона действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта. Для скоростей, приближенных к скорости света, используются законы теории относительности.

    Нельзя рассматривать частный случай (при ) второго закона как эквивалент первого, так как первый закон постулирует существование ИСО, а второй формулируется уже в ИСО.

    Историческая формулировка

    Исходная формулировка Ньютона:

    Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.

    6.2. Масса и импульс.

    1) И́мпульс (Количество движения) - векторная физическая величина, характеризующая меру механического движения тела. В классической механике импульс тела равен произведению массы m этой точки на её скорость v, направление импульса совпадает с направлением вектора скорости:

    В более общем виде, справедливом также и в релятивистской механике, определение имеет вид:

    Импульс - это аддитивный интеграл движения механической системы, связанный согласно теореме Нётер с фундаментальной симметрией - однородностью пространства.

    2) Ма́сса (от греч. μάζα) - одна из важнейших физических величин. Первоначально (XVII-XIX века) она характеризовала «количество вещества» в физическом объекте, от которого, по представлениям того времени, зависели как способность объекта сопротивляться приложенной силе (инертность), так и гравитационные свойства - вес. Тесно связана с понятиями «энергия» и «импульс» (по современным представлениям - масса эквивалентна энергии покоя).

    В современной физике понятие «количество вещества» имеет другой смысл, а концепцию «масса» можно трактовать несколькими способами:

    Пассивная гравитационная масса показывает, с какой силой тело взаимодействует с внешними гравитационными полями - фактически эта масса положена в основу измерения массы взвешиванием в современной метрологии.

    Активная гравитационная масса показывает, какое гравитационное поле создаёт само это тело - гравитационные массы фигурируют в законе всемирного тяготения.

    Инертная масса характеризует меру инертности тел и фигурирует в одной из формулировок второго закона Ньютона. Если произвольная сила в инерциальной системе отсчёта одинаково ускоряет разные исходно неподвижные тела, этим телам приписывают одинаковую инертную массу.

    Второй закон Ньютона - Произведение массы тела на ускорение равно силе действующей на тело.

    Формула 1 - Второй закон Ньютона.


    Второй закон Ньютона справедлив для инерциальных систем отсчета. Итак, о чем же говорит этот закон. Допустим, у нас есть тело обладающее массой. Это тело расположено на ровной поверхности. Скажем металлически шарик на поверхности стола. Шарик находится в состоянии покоя. Чтобы заставить двигаться шарик по поверхности стола к нему нужно приложить некоторую силу.

    Рисунок 1 - Шарик на поверхности стола.


    Силу нужно прикладывать непрерывно. То есть мы берем и рукой толкаем шарик, от одного края стола к другому. При этом она затрачивается на преодоление силы трения качения и, в общем случае, силы сопротивления воздуха. Но можно взять и толкнуть шарик. Он покатится самостоятельно к противоположному концу стола. Из-за чего это происходит, ведь нет руки, которая его толкает, а он продолжает свое движение. Откуда же берется сила для преодоления сил трения.

    Так как наш шарик обладает массой, и мы находимся в инерциальной системе отсчета, то он обладает инертностью. Как известно из первого закона Ньютона, инертность тела препятствует изменению состояния покоя тела. Состояние покоя можно считать как неподвижное состояние, как в нашем случае, или прямолинейное равномерное движение.

    Соответственно в момент толчка мы прикладываем силу, которая выводит шарик из состояния покоя. И он начинает двигаться по поверхности стола. Именно эта сила и расходуется на преодоление сил трения.

    Рисунок 2 - Шарик, катящийся по столу.


    В момент толчка, скорость шарика, изменяется от нулевой до определенного значения. Это изменение не может происходить мгновенно, в силу инертности шарика обладающего массой. На него затрачивается какое-то количество времени. А как мы знаем скорость изменения скорости это ускорение.

    Формула 2 - Ускорение.


    Если перефразировать второй закон Ньютона, то можно сказать что, ускорение тела зависит как от массы тела, так и от прилагаемой к нему силы. Вернемся к нашему шарику. Если он будет весить, скажем, 1 кг, то на его разгон руками потребуется небольшое усилие. Если же он будет весить 10 кг, то для его разгона придётся приложить усилия значительно больше.

    Расположим динамометр вертикально и к его крючку будем подвешивать различные тела. Растяжение пружины показывает, что на все тела со стороны Земли действует сила притяжения. Эта сила называется силой тяжести.

    Подвесим на крючок динамометра сначала одно тело, а потом другое, изготовленное из того же материала, но имеющее в два раза больший объём. Опыт показывает, что на второе тело действует в два раза большая сила тяжести. Затем измерим силу тяжести, действующую на тела одинакового объёма, но изготовленные из разных материалов. Опыт показывает, что на тела одинакового объёма, сделанные из алюминия и стали, действуют неодинаковые силы тяжести. Следовательно, сила тяжести, действующая на тело, зависит не только от его объёма.

    Физическую величину, которая полностью определяет значение силы притяжения тела к Земле, называется массой тела .

    Физическая величина, которой прямо пропорциональна сила притяжения к Земле, называется массой тела.

    За единицу измерения массы принята масса международного эталона килограмма. Эта единица измерения называется килограмм (1 кг).

    Тело имеет массу 1 кг, если на него действует такая же сила тяжести, какая действует в том же месте наблюдения на международный эталон килограмма.

    Хорошо известно, что под действием одинаковых сил разные тела могут приобретать различные ускорения. От чего же ещё, кроме значения действующей силы, зависит ускорение тела? Опыт показывает, что единственной характеристикой тела, от которой зависит ускорение при действии одинаковых сил, является масса тела.

    При действии одинаковых сил ускорение ɑ ̴ 1/m.

    По определению, сила пропорциональна ускорению тела. Следовательно, ускорение движения тела прямо пропорционально действующей на него силе и обратно пропорционально массе тела. Это утверждение называется вторым законом Ньютона или вторым законом механики:

    Используя второй закон Ньютона, можно решать три вида практических задач. Если известны значения силы F и массы m тела, то можно определить ускорение движения тела. При известных значениях массы тела и ускорения можно найти силу, вызывающую ускорение:

    F = m ɑ

    По известным значениям силы и ускорения можно найти массу тела:

    m = F/ ɑ

    Мы знаем, что под действием сил тела не могут мгновенно изменять своё состояние покоя или движения. Это свойство тел называется инертностью.

    Из второго закона Ньютона следует, что разные тела под действием одинаковых сил движутся с различными ускорениями. Скорость тела изменяется тем медленнее, чем больше масса тела. Следовательно, масса является мерой инертности тела.

    Таким образом, масса тела одновременно является мерой двух свойств тел: способности взаимодействовать с другими телами силами тяготения и мерой инертности тел.

    Второй закон Ньютона выполняется только в инерциальных системах отсчёта.

    Остались вопросы? Не знаете второй закон Ньютона?
    Чтобы получить помощь репетитора – .
    Первый урок – бесплатно!

    blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

    Приложенная к телу, а m {\displaystyle \ m} - масса тела. Или в ином виде:

    • Формулировка второго закона Ньютона с использованием понятия импульса :

    В инерциальных системах отсчёта производная импульса материальной точки по времени равна действующей на неё силе :

    d p → d t = F → , {\displaystyle {\frac {d{\vec {p}}}{dt}}={\vec {F}},} где p → = m v → {\displaystyle {\vec {p}}=m{\vec {v}}} - импульс (количество движения) точки, - её скорость , а t {\displaystyle t} - время .

    Область применения закона

    Второй закон Ньютона в классической механике сформулирован применительно к движению материальной точки. Предполагается, что масса материальной точки неизменна во времени . Уравнения, соответствующие данному закону, называются уравнениями движения материальной точки или основными уравнениями динамики материальной точки .

    Иногда в рамках классической механики предпринимались попытки распространить сферу применения уравнения d p → / d t = F → {\displaystyle d{\vec {p}}/dt={\vec {F}}} и на случай тел переменной массы. Однако вместе с таким расширительным толкованием уравнения приходилось существенным образом модифицировать принятые ранее определения и изменять смысл таких фундаментальных понятий, как материальная точка, импульс и сила .

    В случае, когда на материальную точку действует несколько сил, каждая из них сообщает точке ускорение, определяемое вторым законом Ньютона так, как если бы других сил не было (принцип независимости действия сил). Поэтому результирующее ускорение материальной точки можно определить по второму закону Ньютона, подставив в него равнодействующую силу .

    предполагает скалярную аддитивность масс .

    Помимо материальной точки, уравнение второго закона Ньютона применимо также для описания механического движения центра масс механической системы. Центр масс движется, как материальная точка, имеющая массу, равную массе всей системы, и находящаяся под действием всех внешних сил, приложенных к точкам системы (теорема о движении центра масс системы).

    Второй закон Ньютона выполняется только в инерциальных системах отсчёта . Тем не менее, добавляя к силам, действующим со стороны других тел, силы инерции , для описания движения в неинерциальных системах отсчёта можно пользоваться уравнением второго закона Ньютона . В таком случае для неинерциальной системы отсчёта уравнение движения записывается в той же форме, что и для инерциальной системы: масса тела, умноженная на его ускорение относительно неинерциальной системы отсчёта, равна по величине и направлению равнодействующей всех сил, включая и силы инерции, приложенные к телу .

    Логическая роль второго закона Ньютона

    В ньютоновском изложении классической механики законы Ньютона ниоткуда не «выводятся», они имеют статус аксиом , базирующихся на совокупности экспериментальных фактов. Как и аксиомы математики, аксиомы ньютоновской динамики можно сформулировать немного по-разному.

    При одном подходе второй закон Ньютона позиционируется как экспериментально проверяемое утверждение о пропорциональности ускорения вызывающей его силе и, одновременно, определение инертной массы тела через отношение величин силы и ускорения . Тогда основная идея второго закона состоит в декларации линейности соотношения «сила-ускорение», то есть что именно эти величины (а не, скажем, сила и скорость) и именно таким образом (а не квадратично и т. п.) связаны между собой.

    При другом подходе можно ввести инертную массу независимо от второго закона Ньютона, через массу определённого тела, принимаемого за эталон. Тогда второй закон содержит два независимо экспериментально проверяемых утверждения: о пропорциональности ускорения силе и обратной пропорциональности массе .

    Уравнение второго закона Ньютона F → = m a → {\displaystyle {\vec {F}}=m{\vec {a}}} рассматривается как уравнение связи между физическими величинами при определении единиц силы в системах СИ , СГС и других . Единица силы определяется как такая сила, которая материальной точке с массой, равной единице массы, принимаемой в качестве основной, сообщает ускорение, равное единице ускорения, определённой ранее в качестве производной единицы . (При независимом выборе единиц массы, силы и ускорения выражение второго закона нужно писать в виде m a → = k F → {\displaystyle m{\vec {a}}=k{\vec {F}}} , где k {\displaystyle k} - коэффициент пропорциональности, определяющийся выбором единиц измерения ).

    Во многих практических и учебных задачах второй закон Ньютона позволяет вычислять силу . Но данный закон не является дефиницией силы (высказывание типа «по определению, сила есть произведение массы на ускорение» неуместно), иначе он превратился бы в тавтологию.

    В случае отсутствия воздействия на тело со стороны других тел ( F → = 0 {\displaystyle {\vec {F}}=0} ), из второго закона Ньютона следует, что ускорение тела равно нулю. Отсюда может показаться, что первый закон Ньютона входит во второй как его частный случай. Однако, это не так, поскольку именно первым законом постулируется существование инерциальных систем отсчёта, что является самостоятельным содержательным утверждением. Соответственно, первый закон Ньютона формулируется независимо от второго.

    Формула второго закона Ньютона a → = F → / m {\displaystyle {\vec {a}}={\vec {F}}/m} выражает принцип причинности классической механики. Координаты и скорости материальной точки в момент времени t + Δ t {\displaystyle t+\Delta t} (где Δ t → 0 {\displaystyle \Delta t\to 0} ) непрерывно и однозначно определяются через их значения в момент времени t {\displaystyle t} и заданную силу , действующую на материальную точку. Разлагая в ряд Тейлора и ограничиваясь малыми первого порядка по t {\displaystyle t} , получаем : r → (t + Δ t) = r → (t) + v → Δ t {\displaystyle {\vec {r}}(t+\Delta t)={\vec {r}}(t)+{\vec {v}}\Delta t} , v → (t + Δ t) = v → (t) + a → Δ t {\displaystyle {\vec {v}}(t+\Delta t)={\vec {v}}(t)+{\vec {a}}\Delta t} . Форма, в которой в механике реализуется причинность, называется механистическим или лапласовским детерминизмом .

    Второй закон Ньютона устанавливает связь между динамическими и кинематическими величинами .

    В случае, когда сила F → {\displaystyle {\vec {F}}} постоянна, интегрирование уравнения второго закона Ньютона d v → d t = F → m {\displaystyle {\frac {d{\vec {v}}}{dt}}={\frac {\vec {F}}{m}}} в этом случае приводит к равенству v 2 → − v 1 → = F → m (t 2 − t 1) {\displaystyle {\vec {v_{2}}}-{\vec {v_{1}}}={\frac {\vec {F}}{m}}(t_{2}-t_{1})} . Это соотношение показывает, что под действием заданной силы F → {\displaystyle {\vec {F}}} определённое изменение скорости Δ v → = v 2 → − v 1 → {\displaystyle \Delta {\vec {v}}={\vec {v_{2}}}-{\vec {v_{1}}}} у тела с большей массой происходит за более продолжительный промежуток времени. Поэтому говорят, что все тела обладают инерцией, а массу m {\displaystyle m} называют мерой инерции тела .

    Запись закона в разных системах координат

    Векторная запись второго закона Ньютона m a → = F → {\displaystyle m{\vec {a}}={\vec {F}}} верна для любой инерциальной системы координат, относительно которой определяются входящие в этот закон величины (сила, масса, ускорение) . Однако, разложение на компоненты (проекции) будет различным для декартовой, цилиндрической и сферической систем. Интерес также представляет разложение на нормальную и тангенциальную составляющие.

    M x ¨ = F x {\displaystyle m{\ddot {x}}=F_{x}} , m y ¨ = F y {\displaystyle m{\ddot {y}}=F_{y}} , , где F → = F x i → + F y j → + F z k → {\displaystyle {\vec {F}}=F_{x}{\vec {i}}+F_{y}{\vec {j}}+F_{z}{\vec {k}}} , а орты декартовой системы i → {\displaystyle {\vec {i}}} , j → {\displaystyle {\vec {j}}} , k → {\displaystyle {\vec {k}}} направлены по осям координат (в сторону возрастания конкретной координаты),

    M (ρ ¨ − ρ φ ˙ 2) = F ρ {\displaystyle m({\ddot {\rho }}-\rho {\dot {\varphi }}^{2})=F_{\rho }} , m (ρ φ ¨ − 2 ρ ˙ φ ˙) = F φ {\displaystyle m(\rho {\ddot {\varphi }}-2{\dot {\rho }}{\dot {\varphi }})=F_{\varphi }} , m z ¨ = F z {\displaystyle m{\ddot {z}}=F_{z}} , где F → = F ρ e → ρ + F φ e → φ + F z e → z {\displaystyle {\vec {F}}=F_{\rho }{\vec {e}}_{\rho }+F_{\varphi }{\vec {e}}_{\varphi }+F_{z}{\vec {e}}_{z}} , а орты e → ρ {\displaystyle {\vec {e}}_{\rho }} , , e → z {\displaystyle {\vec {e}}_{z}} цилиндрической системы берутся в точке приложения силы и направлены, соответственно, от оси z {\displaystyle z} под 90 0 к ней, по окружности в плоскости x y {\displaystyle xy} с центром на оси, и вдоль z {\displaystyle z} (в сторону возрастания конкретной координаты),

    M (r ¨ − r φ ˙ 2 sin 2 ⁡ θ − r θ ˙ 2) = F r {\displaystyle m({\ddot {r}}-r{\dot {\varphi }}^{2}\sin ^{2}\theta -r{\dot {\theta }}^{2})=F_{r}} , m ([ r φ ¨ + 2 r ˙ φ ˙ ] sin ⁡ θ + 2 r φ ˙ θ ˙ cos ⁡ θ) = F φ {\displaystyle m(\sin \theta +2r{\dot {\varphi }}{\dot {\theta }}\cos \theta)=F_{\varphi }} , m (2 r ˙ θ ˙ + r θ ¨ − r φ ˙ 2 sin ⁡ θ cos ⁡ θ) = F θ {\displaystyle m(2{\dot {r}}{\dot {\theta }}+r{\ddot {\theta }}-r{\dot {\varphi }}^{2}\sin \theta \cos \theta)=F_{\theta }} , где F → = F r e → r + F φ e → φ + F θ e → θ {\displaystyle {\vec {F}}=F_{r}{\vec {e}}_{r}+F_{\varphi }{\vec {e}}_{\varphi }+F_{\theta }{\vec {e}}_{\theta }} , а орты e → r {\displaystyle {\vec {e}}_{r}} , e → φ {\displaystyle {\vec {e}}_{\varphi }} , e → θ {\displaystyle {\vec {e}}_{\theta }} сферической системы берутся в точке приложения силы и направлены, соответственно, от центра O {\displaystyle O} , по «параллелям», и по «меридианам» (в сторону возрастания конкретной координаты).

    • Разложение в соприкасающейся плоскости

    Тангенциальная составляющая силы равна F t = m a t = m d 2 s d t 2 {\displaystyle F_{t}=ma_{t}=m{\frac {d^{2}s}{dt^{2}}}} , где s = s (t) {\displaystyle s=s(t)} - дуговая координата по траектории точки . Если d 2 s d t 2 > 0 {\displaystyle {\frac {d^{2}s}{dt^{2}}}>0} , то сила совпадает по направлению с вектором скорости v → {\displaystyle {\vec {v}}} и её называют движущей силой . Если d 2 s d t 2 < 0 {\displaystyle {\frac {d^{2}s}{dt^{2}}}<0} , то сила F t → {\displaystyle {\vec {F_{t}}}} противоположна по направлению вектору скорости v → {\displaystyle {\vec {v}}} и её называют тормозящей силой .

    Второй закон за пределами классической механики

    В релятивистской динамике

    Второй закон Ньютона в виде m a → = F → {\displaystyle m{\vec {a}}={\vec {F}}} приближённо справедлив только для скоростей , много меньших скорости света , и в инерциальных системах отсчёта .

    В виде d p → d t = F → {\displaystyle {\frac {d{\vec {p}}}{dt}}={\vec {F}}} второй закон Ньютона точно справедлив также в инерциальных системах отсчёта специальной теории относительности и в локально инерциальных системах отсчёта общей теории относительности , однако при этом вместо прежнего выражения для импульса используется равенство p → = m v → 1 − v 2 c 2 {\displaystyle {\vec {p}}={\frac {m{\vec {v}}}{\sqrt {1-{\frac {\displaystyle v^{2}}{\displaystyle c^{2}}}}}}} , где c {\displaystyle c} - скорость света .

    Существует и четырёхмерное релятивистское обобщение второго закона Ньютона. Производная четырёхимпульса P → {\displaystyle {\vec {\mathrm {P} }}} по собственному времени τ {\displaystyle \tau } материальной точки равна четырёхсиле Φ → {\displaystyle {\vec {\Phi }}} :

    Φ → = d P → d τ {\displaystyle {\vec {\Phi }}={\frac {d{\vec {\mathrm {P} }}}{d\tau }}} .

    В релятивистской динамике вектор трёхмерного ускорения a → {\displaystyle {\vec {a}}} уже не параллелен вектору трёхмерной силы F → {\displaystyle {\vec {F}}} .

    В квантовой механике

    Законы ньютоновской динамики, в том числе второй закон Ньютона, неприменимы, если длина волны де Бройля рассматриваемого объекта соизмерима с характерными размерами области, в которой изучается его движение. В этом случае необходимо пользоваться квантовомеханическими законами .

    Тем не менее, второй закон Ньютона при определённых условиях актуален применительно к движению волнового пакета в квантовой механике. Если потенциальная энергия волнового пакета пренебрежимо мало изменяется в области нахождения пакета, то производная по времени среднего значения импульса пакета будет равна силе, понимаемой как градиент потенциальной энергии , взятый с обратным знаком (теорема Эренфеста).

    Видоизменённый второй закон Ньютона используется и при квантовомеханическом описании движения электронов в кристаллической решётке. Взаимодействие электрона с периодическим электромагнитным полем решётки при этом учитывается введением понятия эффективной массы .

    Научно-историческое значение закона

    Оценивая значение второго закона Ньютона, А. Эйнштейн писал:

    Дифференциальный закон является той единственной формой причинного объяснения, которая может полностью удовлетворять современного физика. Ясное понимание дифференциального закона есть одно из величайших духовных достижений Ньютона… Только переход к рассмотрению явления за бесконечно малое время (т. е. к дифференциальному закону) позволил Ньютону дать формулировку, пригодную для описания любого движения… Так Ньютон пришёл… к установлению знаменитого закона движения:

    Вектор ускорения × Масса = Вектор силы.

    Это - фундамент всей механики и, пожалуй, всей теоретической физики.

    Все законы природы для сил в зависимости от свойств тел, их состояний и движений получаются из опытов и устанавливаются всегда и только на основе решения уравнения F → = m a → {\displaystyle {\vec {F}}=m{\vec {a}}} , которое употребляется для выражения силы .

    Лагранжево и гамильтоново обобщения закона

    В аналитической механике существует два аксиоматических подхода. При одном подходе в качестве аксиомы принимается второй закон Ньютона и из него выводятся уравнения Лагранжа . При другом подходе в качестве аксиомы принимаются уравнения Лагранжа. Тогда второй закон Ньютона рассматривается как следствие из них .

    Теорема об изменении обобщённого импульса обобщает и включает как частные случаи теоремы ньютоновской динамики об изменении количества движения и об изменении кинетического момента .

    p ˙ i = − ∂ H ∂ q i {\displaystyle {\dot {p}}_{i}=-{\frac {\partial H}{\partial q_{i}}}} ,

    где, как и выше, p i = ∂ L ∂ q ˙ i {\displaystyle p_{i}={\frac {\partial L}{\partial {\dot {q}}_{i}}}} - обобщённый импульс, через H = ∑ i = 1 s p i q ˙ i − L {\displaystyle H=\sum _{i=1}^{s}p_{i}{\dot {q}}_{i}-L} обозначена функция Гамильтона , а L = L (q i , q ˙ i , t) {\displaystyle L=L(q_{i},{\dot {q}}_{i},t)} -