Что такое свободная энергия Гиббса.

ОПРЕДЕЛЕНИЕ

Как и другие термодинамические уравнения, связывает между собой термодинамические параметры систем, представленные посредством функций – термодинамических потенциалов (таких как энтальпия, или ).

Однако это уравнение имеет и более интересное, специфичное применение: оно позволяет определить, возможно ли вообще (а если возможно – при каких условиях?) осуществить тот или иной термодинамический процесс. Чаще всего его используют в химии, чтобы узнать, будет ли протекать химическая реакция, а может, реагенты для этого нужно охладить или нагреть? Уравнение Гиббса применяется для изобарно-изотермических процессов, а именно такими и являются и фазовые переходы.

Уравнение имеет вид:

— изменение энтальпии системы, Т – её абсолютная температура, S – энтропия. – свободная энергия Гиббса, которую еще называют «изобарно-изотермический потенциал».

Проанализировать уравнение будет удобнее, записав его в несколько другом виде:

Энтальпия – сумма внутренней энергии системы и работу, которую может выполнить система при p. Грубо говоря, энтальпия – это полное содержание энергии в системе. Энтропийный фактор – та часть энергии системы, которая не может быть потрачена на полезную работу, а может только рассеяться в окружающую среду в виде тепла, увеличивая хаотичность системы. Энергия Гиббса — максимальная полезная работа, которую может выполнить система.

Термодинамический процесс осуществим, если — в этом процессе система будет переходить в состояние равновесия . При title="Rendered by QuickLaTeX.com" height="13" width="64" style="vertical-align: 0px;"> процесс не разрешен – если в конечном состоянии энергия, которая могла бы уйти на полезную работу, возросла в сравнении с начальным состоянием, значит, она вообще не тратилась при осуществлении процесса. Значит, и процесс-то этот невозможен.

Величина свободной энергии Гиббса

Величину свободной энергии Гиббса может определять как фактор энтальпии, так и энтропии. Рассмотрим это на примерах химических реакций:

1) , title="Rendered by QuickLaTeX.com" height="13" width="76" style="vertical-align: 0px;"> – в этом случае — реакцию можно провести при любой температуре. Такой расклад характерен, например, для горения .

2) title="Rendered by QuickLaTeX.com" height="13" width="67" style="vertical-align: 0px;">, – изменение энергии Гиббса больше нуля. Реакция однозначно не осуществима.

3) , – реакция возможна при низкой температуре. Если температура в будет небольшой, энтропийная составляющая будет возрастать медленно, и энергия Гиббса будет уменьшатся. Именно так проходит процесс синтеза аммиака без катализатора: . Правда, скорость реакции при этом мала, и в промышленности применяют метод Габера – с катализатором и при высоких температурах.

4) title="Rendered by QuickLaTeX.com" height="17" width="158" style="vertical-align: -4px;"> – реакция возможна при высокой температуре. Тогда отрицательный энтропийный фактор уравновесит положительное изменение энтальпии, и энергия Гиббса уменьшается. Если нагреть тетраоксид азота (окислитель ракетного топлива), он разложится на окись азота, важный трансмиттер газов в живых организмах: .

Изменение энергии Гиббса указывает на термодинамическую возможность реакции – но это не значит, что реакция обязательно будет (не)осуществима в реальных условиях. На практике на возможность протекания реакции влияют и кинетические факторы: концентрация реагентов, контактная поверхность между фазами, наличие катализаторов.

Примеры решения задач

ПРИМЕР 1

Задание Реакция протекает при температуре 298 К. В результате образуется вода в жидкой фазе. Изменение энергии Гиббса кДж. За счет энтальпийного или энтропийного фактора протекает реакция?
Решение Оценим, как изменяется энтропия реагентов (для удобства примем количество вещества кислорода 1 моль). На входе мы имеем объем реагентов:

В то же время объем образовавшейся (в качестве единицы используем граммы, единицы объема – литры):

Так как объем вещества при изобарно-изотермическом процессе значительно уменьшается, то уменьшается и энтропия.

Исходя из уравнения Гиббса:

— если изменение и энергии Гиббса, и энтальпии отрицательны, то протекание реакции определяет изменение энтальпии.

любая химическая реакция сопровождается выделением или поглощением энергии. Чаще всего энергия выделяется или поглощается в виде теплоты (реже - в виде световой или механической энергии). Эту теплоту можно измерить. Результат измерения выражают в килоджоулях (кДж) для одного моля реагента или (реже) для моля продукта реакции. Такая величина называется тепловым эффектом реакции.

    Тепловой эффект - количество теплоты, выделившееся или поглощенное химической системой при протекании в ней химической реакции.

Тепловой эффект обозначается символами Q или DH (Q = -DH). Его величина соответствует разности между энергиями исходного и конечного состояний реакции:

DH = H кон. - H исх. = E кон. - E исх.

Значки (г), (ж) обозначают газообразное и жидкое состояние веществ. Встречаются также обозначения (тв) или (к) - твердое, кристаллическое вещество, (водн) - растворенное в воде вещество и т.д.

Обозначение агрегатного состояния вещества имеет важное значение. Например, в реакции сгорания водорода первоначально образуется вода в виде пара (газообразное состояние), при конденсации которого может выделиться еще некоторое количество энергии. Следовательно, для образования воды в виде жидкости измеренный тепловой эффект реакции будет несколько больше, чем для образования только пара, поскольку при конденсации пара выделится еще порция теплоты.

Используется также частный случай теплового эффекта реакции - теплота сгорания. Из самого названия видно, что теплота сгорания служит для характеристики вещества, применяемого в качестве топлива. Теплоту сгорания относят к 1 молю вещества, являющегося топливом (восстановителем в реакции окисления), например:

Запасенную в молекулах энергию (Е) можно отложить на энергетической шкале. В этом случае тепловой эффект реакции (Е) можно показать графически

Этот закон был открыт Гессом в 1840 г. на основании обобщения множества экспериментальных данных.

7.Энтропия. Свободная энергия Гиббса. Термодинамический критерий направленности химического процесса.

Энтропия - это сокращение доступной энергии вещества в результате передачи энергии. Первый закон термодинамики гласит, что энергию невозможно создать или уничтожить. Следовательно, количество энергии во вселенной всегда такое же, как было и при ее создании. Второй закон термодинамики гласит, чтокоэффициентполезного действия ни одного реального (необратимого) процесса не может быть 100% при преобразовании энергии в работу.

где ΔS - изменение энтропии, ΔQ - изменениетеплоты,T - абсолютная термодинамическая температура.

Следовательно, количество энергии для преобразования в работу или теплоту непрерывно уменьшается со временем, так как теплота спонтанно переходит из более теплой области к более холодной

Энергия Гиббса и направление протекания реакции

В химических процессах одновременно действуют два противоположных фактора - энтропийный () иэнтальпийный (). Суммарный эффект этих противоположных факторов в процессах, протекающих при постоянном давлении и температуре, определяет изменениеэнергии Гиббса ():

Из этого выражения следует, что , то есть некотороеколичество теплотырасходуется на увеличение энтропии (), эта часть энергии потеряна для совершения полезнойработы(рассеивается в окружающую среду в виде тепла), её часто называютсвязанной энергией. Другая часть теплоты () может быть использована для совершения работы, поэтому энергию Гиббса часто называют также свободной энергией.

Характер изменения энергии Гиббса позволяет судить о принципиальной возможности осуществления процесса. При процесс может протекать, припроцесс протекать не может (иными словами, если энергия Гиббса в исходном состоянии системы больше, чем в конечном, то процесс принципиально может протекать, если наоборот - то не может). Если же, то система находится в состояниихимического равновесия.

Свободная энергия Гиббса (или простоэнергия Гиббса , илипотенциал Гиббса , илитермодинамический потенциал в узком смысле) - это величина, показывающая изменение энергии в ходе химической реакции и дающая таким образом ответ на вопрос о принципиальной возможности протекания химической реакции; этотермодинамический потенциалследующего вида:

Энергию Гиббса можно понимать как полную химическуюэнергиюсистемы (кристалла, жидкости и т. д.)

Понятие энергии Гиббса широко используется в термодинамикеихимии.

Самопроизвольное протекание изобарно-изотермического процесса определяется двумя факторами: энтальпийным, связанным с уменьшением энтальпиисистемы (ΔH), и энтропийным T ΔS, обусловленным увеличением беспорядка в системе вследствие роста еёэнтропии. Разность этих термодинамических факторов является функцией состояния системы, называемой изобарно-изотермическим потенциалом или свободной энергией Гиббса (G, кДж)

Классическим определением энергии Гиббса является выражение

где -внутренняя энергия,-давление,-объём,- абсолютнаятемпература,-энтропия.

Дифференциалэнергии Гиббса для системы с постоянным числом частиц, выраженный в собственных переменных - черездавлениеp итемпературуT:

Для системы с переменным числом частиц этот дифференциал записывается так:

Здесь -химический потенциал, который можно определить как энергию, которую необходимо затратить, чтобы добавить в систему ещё одну частицу.

S – функция состояния системы, называемая энтропией. Энтропия характеризует меру неупорядоченности (хаотичности) состояния системы. Единицами измерения энтропии являются Дж/(моль·К).

Абсолютная энтропия веществ и изменение энтропии в процессах

При абсолютном нуле температур (Т = 0 К) энтропия идеального кристалла любого чистого простого вещества или соединения равна нулю. Равенство нулю S при 0 К позволяет вычислить абсолютные величины энтропий веществ на основе экспериментальных данных о температурной зависимости теплоемкости.

Изменение энтропии в процессе выражается уравнением:

S = S (прод .) – S (исх .) ,

где S (прод.) и S (исх.) – соответственно абсолютные энтропии продуктов реакции и исходных веществ.

На качественном уровне знак S реакции можно оценить по изменению объема системы V в результате процесса. Знак V определяется по изменению количества вещества газообразных реагентов n г. Так, для реакции CaCO 3 (к) = CaO(к) + CO 2 (г):

(n г = 1) V > 0, значит, S > 0.

Для реакции С(графит) + 2Н 2 (г) = СН 4 (г)

(D n г = -1) V 0, следовательно и S 0.

Стандартная энтропия

Величины энтропии принято относить к стандартному состоянию. Чаще всего значения S рассматриваются при Р = 101,325 кПа (1 атм) и температуре Т = 298,15 К (25 о С). Энтропия в этом случае обозначается S о 298 и называется стандартной энтропией при Т = 298,15 К. Следует подчеркнуть, что энтропия вещества S (S о) увеличивается при повышении температуры.

Стандартная энтропия образования

Стандартная энтропия образования S о f,298 (или S о обр,298) – это изменение энтропии в процессе образования данного вещества (обычно 1 моль), находящегося в стандартном состоянии, из простых веществ, также находящихся в стандартном состоянии.

Энергия Гиббса

G – функция состояния системы, называемая энергией Гиббса . Энергия Гиббса равна:

Абсолютное значение энергии Гиббса определить невозможно, однако можно вычислить изменение G в результате протекания процесса.

Критерий самопроизвольного протекания процесса: в системах, находящихся при Р, Т = const, самопроизвольно могут протекать только процессы, сопровождающиеся уменьшением энергии Гиббса
(G 0). При достижении равновесия в системе G = 0.

Стандартная энергия Гиббса образования

Стандартная энергия Гиббса образования G о f,298 (или G о обр,298) – это изменение энергии Гиббса в процессе образования данного вещества (обычно 1 моль), находящегося в стандартном состоянии, из простых веществ, также находящихся в стандартном состоянии, причем простые вещества пристутствуют в наиболее термодинамически устойчивых состояниях при данной температуре.

Для простых веществ, находящихся в термодинамически наиболее устойчивой форме, G о f,298 = 0.

Энтальпийный, энтропийный фактор и направление процесса

Проанализируем уравнениеG о Т = Н о Т - Т S о Т. При низких температурах ТS о Т мало. Поэтому знак G о Т определяется в основном значением Н о Т (энтальпийный фактор). При высоких температурах Т S о Т – большая величина, знак D G о Т определяется и энтропийным фактором. В зависимости от соотношения энтальпийного (Н о Т) и энтропийного (Т S о Т) факторов существует четыре варианта процессов.

Примеры решения задач

Используя термодинамические справочные данные, вычислить при 298,15 К изменение энтропии в реакции:

4NH 3(г) + 5O 2(г) = 4NО (г) + 6H 2 O (ж) .

Объяснить знак и величину S о.

Решение. Значения стандартных энтропий исходных веществ и продуктов реакции приведены ниже:

S о х.р.,298 = 4S о 298 (NО (г) ) + 6S о 298 (H 2 O (ж)) - 4S о 298 (NH 3(г)) - 5S о 298 (O 2(г)) = 4× 210,64 + 6× 69,95 - 4× 192,66 - 5× 205,04 = - 533,58 Дж/К

В данной реакции V 0 (n г = - 5), следовательно и S o х.р.,298

. Используя справочные термодинамические данные, рассчитать стандартную энтропию образования NH 4 NO 3(к) . Отличается ли стандартная энтропия образования NH 4 NO 3(к) от стандартной энтропии этого соединения?

Решение. Стандартной энтропии образования NH 4 NO 3 отвечает изменение энтропии в процессе:

N (г) + 2H 2(г) + 3/2O 2(г) = NH 4 NO 3(к) ; S о f,298 (NH 4 NO 3(к)) = ?

Значения стандартных энтропий исходных веществ и продуктов реакции приведены ниже:

S о х.р.,298 = S о f,298 (NH 4 NO 3(к)) = S о 298 (NH 4 NO 3(к)) - S о 298 (N 2(г)) - 2S о 298 (H 2(г)) – 3/2S о 298 (O 2(г)) = 151,04–191,50- 2× 130,52–3/2× 205,04 = - 609,06 Дж/(моль·К).

Стандартная энтропия образования NH 4 NO 3 (к), равная - 609,06 Дж/(моль·К), отличается от стандартной энтропии нитрата аммония S о 298 (NH 4 NO 3(к)) = +151,04 Дж/(моль·К) и по величине, и по знаку. Следует помнить, что стандартные энтропии веществ S о 298 всегда больше нуля, в то время как величины S 0 f,298 , как правило, знакопеременны.

Изменение энергии Гиббса реакции

2Н 2(г) + О 2(г) = 2 Н 2 О (ж)

равно G о 298 = –474,46 кДж. Не проводя термодинамические расчеты, определить, за счет какого фактора (энтальпийного или энтропийного) протекает эта реакция при 298 К и как будет влиять повышение температуры на протекание этой реакции.

Решение. Поскольку протекание рассматриваемой реакции сопровождается существенным уменьшением объема (из 67,2 л (н.у.) исходных веществ образуется 36 мл жидкой воды), изменение энтропии реакции S о <0. Поскольку G о 298 реакции меньше нуля, то она может протекать при температуре 298 К только за счет энтальпийного фактора. Повышение температуры уменьшает равновесный выход воды, поскольку Т S о <0.

Используя справочные термодинамические данные, определить может ли при 298,15 К самопроизвольно протекать реакция:

С 4 Н 10(г) = 2С 2 Н 4(г) + Н 2(г) .

G о х.р.,298 = 2G о f,298 (С 2 Н 4(г) ) + G о f,298 (Н 2(г) ) - G о f,298 (С 4 Н 10(г) ) = 2× 68,14 + 17,19 = 153,47 кДж.

G о х.р.,298 > 0, следовательно, при Т = 298,15 К реакция самопроизвольно протекать не будет.

S о х.р.,298 = 2S о 298 (С 2 Н 4(г) ) + S о 298 (Н 2(г) ) - S о 298 (С 4 Н 10(г) ) = 2× 219,45 + 130,52 – 310,12 = +259,30 Дж/К.

Поскольку S о х.р.,298 > 0, то при температуре Т> Н о /S о величина G о х.р.,298 станет величиной отрицательной и процесс сможет протекать самопроизвольно.

Пользуясь справочными данными по G о f,298 и S о 298 , определите H о 298 реакции N 2 O (г) + 3H 2(г) = N 2 H 4(г) + H 2 O (ж) .

Решение. Значения стандартных энергий Гиббса и энтропий исходных веществ и продуктов реакции приведены ниже:

G о х.р.,298 = G о f,298 (N 2 H 4 (г)) + G о f,298 (H 2 O(ж)) – G о f,298 (N 2 O(г)) – 3 G о f,298 (H 2 (г)) = 159,10 + (–237,23) – 104,12 – 0 = –182,25 кДж.

S о х.р.,298 = S о 298 (N 2 H 4 (г)) + S о 298 (H 2 O(ж)) – S о 298 (N 2 O(г)) - 3S о 298 (H 2 (г)) = 238,50 + 69,95 – 219,83 –3× 130,52 = –302,94 Дж/К.

G о 298 = Н о 298 – Т S о 298 . Подставляя в это уравнение величины Н о 298 и Т S о 298 , получаем:

Н о 298 = –182,25× 10 3 + 298·(–302,94) = –272526,12 Дж = – 272,53 кДж.

Следует подчеркнуть, что поскольку S о 298 выражена в Дж/(моль× К), то при проведении расчетов G 0 298 необходимо также выразить в Дж или величину S 0 298 представить в кДж/(моль K).

Задачи для самостоятельного решения

11.1.S о f,298 NaHCO 3(к) .


11.2. Выбрать процесс, изменение энергии Гиббса которого соответствует стандартной энергии Гиббса образования NO 2(г) :

а) NO (г) + 1/2O 2(г) = NO 2(г) ; D

V > 0 (D n г = 7),
следовательно и D S о х.р.,298 > 0, что и подтверждено расчетом.

11.4. Используя справочные данные, определить принципиальную возможность протекания реакции при 298,15 К:

NiO (к) + C (графит) = Ni (к) + CO (г) .

Если реакция не будет самопроизвольно протекать при 298,15 К, оценить возможность ее протекания при более высоких температурах.


11.5. Рассчитать стандартную энергию Гиббса образования D G о f,298 C 2 H 5 OH (ж) , используя справочные данные о величинах D Н о f,298 и S о 298 .


11.6. Используя справочные данные, определить стандартную энтропию образования Таким образом, самопроизвольно протекают два процесса.
Так как значение D G о 1 более отрицательное,
то эффективнее при 298 К будет протекать процесс восстановления магнием.


11.8. Используя справочными данными по величинам S о 298 , определите возможность самопроизвольного протекания в изолированной системе при 298 К процесса:
KClO 3(к) =KCl (к) +3/2O 2(к) .


11.9. Используя справочные данные, вычислить при 298 К изменение энтропии в процессе:
Н 2(г) +1/2О 2(г) =Н 2 О (г) .

11.10. На основе справочных данных оценить температуру восстановления WO 3(к) водородом:
WO 3(к) +3H 2(г) =W (к) +3H 2 O (г) .


© Факультет естественных наук РХТУ им. Д.И. Менделеева. 2013 г.

Энтропия

При выяснении природы самопроизвольного протекания процессов /без воздействия из вне/ было установлено, что самопроизвольные реакции сопровождаются экзотермическим эффектом (ΔΗ < 0), и чем он больше, тем выше химическое сродство реагентов друг к другу. Однако для определения самопроизвольного протекания процесса недостаточно найти энтальпийный фактор.

Поэтому другим фактором определения самопроизвольного протекания процессов является термодинамическая функция называемая энтропией системы (S). Энтропия является мерой неупорядоченности состояния системы. Чем меньше упорядоченность системы, тем выше энтропия системы. Единицей измерения энтропии является Дж/моль·°К. Значения энтропии различных веществ в стандартных условиях (S°) приведены в таблицах термодинамических величин (см. приложение, табл.3). В ходе химической реакции энтропия системы изменяется. Это изменение называется энтропией реакции. Все процессы, которые протекают с уменьшением порядка в расположении частиц системы (растворение кристаллов, плавление и др.) сопровождаются увеличением энтропии /ΔS > 0/. И наоборот (кристаллизация, конденсация и др.) сопровождаются уменьшением энтропии /ΔS < 0/.

Энтропию реакции рассчитывают по следствию закона Гесса:

ΔS р = Σ (n · S) прод. – Σ (n · S) исх.

N 2/г/ + О 2/г/ = 2NО /г/

Число молей,(n): 1 1 2

S° 298 (из таблицы): 200 205 211

ΔS° р = 2 · (211) - = 7 Дж/ моль·К.

Так как ΔS° р >0, то данный процесс идет с уменьшением упорядоченности системы.

В отличие от других термодинамических функций, можно определить не только изменения, но и абсолютное значение энтропии. Согласно третьему закону термодинамики «при абсолютном нуле энтропия идеального кристалла равна нулю».

Величина энтропии возрастает с ростом температуры. Неупорядоченность увеличивается при переходе вещества из твёрдого состояния в жидкое, особенно резко возрастает энтропия при переходе из жидкого в газообразное состояние.

Например: ∆S 0 298 Н 2 О тв = 39,3 Дж/моль·°К..,

∆S 0 298 Н 2 О ж = 70,0 Дж/моль·°К, S 0 298 Н 2 О газ = 188,9 Дж/моль·°К.

∆S 0 298 Н 2 О тв < ∆S 0 298 Н 2 О ж < S 0 298 Н 2 О газ

Согласно второму закону термодинамики “в замкнутой /изолированной/ системе самопроизвольно идут процессы, приводящие к росту энтропии, либо без изменения энтропии /ΔS ≥ 0/.

Для процессов протекающих в изобарно-изотермических условиях движущей силой процесса является либо стремление системы перейти в состояние с наименьшей энтальпией /энтальпийный фактор/, либо увеличение энтропии системы /энтропийный фактор/.



Наиболее устойчивое состояние системы соответствует равенству энтальпийного и энтропийного факторов:

ΔΗ = Т·ΔS

Термодинамическая функция, связывающая энтальпию и энтропию системы и показывающая насколько система в данном состоянии отклонилась от равновесного состояния называется энергией Гиббса. Абсолютное значение энергии Гиббса системы определить невозможно и рассчитывают изменение энергии Гиббса /ΔG/. Отсюда следует:

ΔG = ΔН – Т ·ΔS

Стандартные значения изменений энергии Гиббса (ΔG° 298) приведены в таблицах термодинамических величин (см. приложение, табл.3). Единицей измерения энергии Гиббса является Дж/моль. Значение энергии Гиббса является критерием самопроизвольности протекания процессов:

при ΔG < 0 /реально меньше –2/ процесс идет самопроизвольно;

при ΔG = 0 /реально от 0 до –2/ состояние равновесия;

при ΔG > 0 процесс самопроизвольно не идет.

Энергией Гиббса образования вещества (по аналогии с энтальпией) называют энергию Гиббса реакции образования одного моля этого вещества из простых веществ. Энергия Гиббса образования простых веществ принимается равной нулю, если их агрегатное состояние и модификации при стандартных условиях устойчивы.

Энергия Гиббса реакции в стандартных условиях может быть рассчитана по следствию закона Гесса (по аналогии с энтальпией):

ΔG р = Σ (n · ΔG) прод. – Σ (n · ΔG) исх.

СО 2/г/ + С /графит/ = 2СО /г/

Число молей,(n) 1 1 2

ΔG° 298 (из таблицы) -394 0 -137

ΔG° Р = 2 · (-137) - = +120 кДж.

Так как ΔG° Р >0, то в денных условиях процесс самопроизвольно не идет.

Чем больше отрицательная величина ΔG, тем больше реакционная способность веществ (химическое сродство).

Однако стандартная энергия Гиббса химической реакции не может быть критерием направления протекания реакции в условиях, отличных от стандартных.

Определяя ΔН° 298 и ΔS° 298 находим:

а) При 298°К по формуле ΔG р = Σ (n · ΔG) прод. – Σ (n · ΔG) исх. = +5,0 кДж, т.е. равновесие смещено в сторону образования N 2 О 4 , т.к. ΔG > 0, процесс самопроизвольно не идет;

б) При 373°К рассчитываем значения ΔН и ΔS для реакции в стандартных условиях (ΔΗ р = Σ(n ΔΗ) прод. – Σ(n ΔΗ) исх. ΔS р = Σ (n · S) прод. – Σ (n · S) исх.), а затем с учетом температуры подставляем значения ΔН и ΔS в уравнение ΔG = ΔН – Т ·ΔS:

ΔG° 373 = +57 – 373 · 0,176 = -9,0 кДж, т.е. равновесие смещено в сторону образования NО 2 , т.к. ΔG < 0, при температуре 373°К процесс начинает протекать самопроизвольно.

Энергией Гиббса реакции называется изменение энергии Гиббса ΔG при протекании хими-ческой реакции. Так как энергия Гиббса системы G = Н - TS, её изменение в процессе определяется по формуле: ΔG = ΔH-TΔS (4.1)

где Т - абсолютная температура в Кельвинах.

Энергия Гиббса химической реакции характеризует возможность её самопроизвольного проте-канияпри постоянных давлении и температуре. Если ΔG<0, то реакция может протекать самопроиз-вольно, при ΔG>0 самопроизвольное протекание реакции невозможно, если же ΔG = 0, система на-ходится в состоянии равновесия.

Для расчёта энергии Гиббса реакции по формуле (4.1) отдельно определяются ΔН и ΔS. При этом в практических расчётах пользуются приближениями (2.4) и (3.4).

Пример 4.1. Расчёт энергии Гиббса реакции, выраженной уравнением 4NH 3 (г) + 5O 2 (г) = 4NO(г) + + 6Н 2 O(г), при давлении 202.6 кПа и температуре 500°С (773К).

Согласно условию, реакция протекает при практически реальных значениях давления и темпе-ратуры. при которых допустимы приближения (2.4) и (3.4), т.е.

Δ Н 773 ≈ Δ Н 0 298 = - 904.8 кДж = - 904800 Дж. (см. пример 2.2),

а Δ S 773 ≈ Δ S 0 298 = 179,77 Дж/К. (см. пример 3.1).

После подстановки значений Δ H 0 298 и Δ S° 298 в формулу (4.1) получаем:

Δ G 773 = Δ H 773 -773 Δ S 773 ≈ Δ Н 0 298 -773 Δ S 0 298 = - 904800 - 773*179, 1043762 Дж = - 1043,762 кДж.

Полученное отрицательное значение энергии Гиббса реакции Δ G 773 указывает на то, что дан ная реакция в рассматриваемых условиях может протекать самопроизвольно.

Если реакция протекает в стандартных условиях при температуре 298К, расчёт её энергии Гиббса (стандартной энергии Гиббса реакции) можно производить аналогично расчёту стандартной теплоты реакции по фрмуле, котораядля реакции, выраженной уравнением аА + ЬВ = сС + dD, имеет вид:

ΔG ° 298 = (cΔG ° 298,o6p,C + dΔG ° 298,o6p,D) - (aΔG 298,обрА + bΔG° 298,обр,в) (4.2)

где Δ G ° 298, o6p. - стандартная энергия Гиббса образования соединения в кДж/моль (табличные значе-ния) - энергия Гиббса реакции, в которой при температуре 298К образуется 1 моль данного соеди-нения, находящегося в стандартном состоянии, из простых веществ, также находящихся в стан-дартных состояниях 4 *, a Δ G° 298 - стандартная энергия Гиббса реакции в кДж.

Пример 4.2. Расчёт стандартной энергии Гиббса реакции, протекающей по уравнению: 4NH 3 (г) + 5O 2 (г) = 4NO(г) + + 6Н 2 O(г).


В соответствии с формулой (4.2) записываем:

Согласно определению, стандартная энергия Гиббса образования простых веществ равна нулю.

ΔG 0 298 O 2 в выражении не фигурирует ввиду ее равенства нулю

ΔG 0 298 = (4 ΔG 0 298 . no + 6 ΔG 0 298. H 2 O) - 4 ΔG 0 298. NH з После подстановки табличных значений ΔG 0 298 .обР получаем: ΔG 0 298 = (4 (86,69) + 6 (-228, 76)) - 4 (-16,64) = - 959.24 кДж. По полученному результату видно, что так же, как и в примере 4.1, в стандартных условиях рассматриваемая реакция может протекать самопроизвольно

По формуле (4.1) можно определить температурный диапазон самопроизвольного протека-ния реакции. Так как условием самопроизвольного протекания реакции является отрицательность ΔG (ΔG<0), определение области температур, в которой реакция может протекать самопроизвольно, сво-дится к решению неравенства (ΔH-TΔS)

Пример 4.3. Определение температурной области самопроизвольного протекания реакции, вы-раженной уравнением: СаСО 3 (т) = СаО(т) + СO 2 (г).

Находим ΔH u ΔS. ΔH ≈ ΔH° 298 = (ΔН 0 298 , СаО + ΔН° 298, CO 2) - ΔН° 298 , CaCO 3 = (-635,1 + (-393,51)) - (-1206) = 177,39кДж = 177390 Дж; ΔS ≈ ΔS 0 298 = (S 0 298 , СаО + S 0 298.С02) - S 0 298 ,СаСОз = (39,7 + 213,6)- 92,9 = 160,4 Дж/К. Подставляем значения ΔН и ΔS в неравенство и решаем его относительно Т: 177390 - Т*160,4<0, или 177390<Т*160,4, или Т>1106. Т.е. при всех температурах, больших 1106К, бу-дет обеспечиваться отрицательность ΔG и, следовательно, в данном температурном диапазоне бу-дет возможным самопроизвольное протекание рассматриваемой реакции.